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Abstract: 

                   In the present article, we deduce a characterization of BSVN detour interior and 

boundary vertices. We established the relations between BSVN cut node and BSVN detour 

boundary nodes. Further, we studied properties of BSVN boundary nodes and BSVN interior 

nodes. Application of detour boundary node, detour interior is given on modeling wireless 

sensor network in terms of BSVN graphs.  

Keywords: Detour distance, BSVN detour boundary nodes, BSVN detour interior nodes. 

1. Introduction: 

The Neutrosophic sets launch by Smarandache [15, 16] are a great exact implement for the 

situation uncertainty in the real world. These uncertainty idea  comes from the theories of  

fuzzy sets [9], intuitionistic fuzzy sets [6, 8] and interval valued intuitionistic fuzzy sets [7]. 

The representation of the neutrosophic sets are truth, indeterminacy and falsity value. These 

T, I, F values belongs to standard or nonstandard unit interval denoted by  ]−0, 1+[  [10,14]. 

The idea of subclass of the NS  and SVNS  introduced by Wang et al. [17]. The idea 

of SVNS initiation by intuitionistic fuzzy sets [5,11], in this the functions Truth, 

Indeterminacy, Falsity are not dependent and these values are present  within [0, 1] [12]. 
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Neutrosophic theory is widely expands in all fields especially authors discoursed about 

topology with respect to neutrosophic [18]. 

Graph theory has at this time turn into a most important branch of mathematics. It is 

the division of combinatory. The Graph is a extensively important to analyze combinatorial 

complication in dissimilar areas in mathematics, optimization and computer science. Mainly 

significant object is well-known. The uncertainty on the subject of vertice and edges or both  

representation to be a fuzzy graph.  

In a graph theory the new graph model was invites by using BSVN set is known as 

BSVN Graph(BSVNG). In [3, 4, 13] Broumi et al. explained BSVN graphs from the recall of  

fuzzy,  bipolar fuzzy and single valued neutrosophic graphs. 

In this manuscript, discus about BSVN graphs and neutrosophic detour distance 

between two vertices of the graph based on this define BSVN eccentricity, radius, diameter, 

center and periphery with respect to detour distance. Also find some important results on 

these topics. 

2. Preliminaries: 

Explanation 2.1 BSVN sets:- 

A BSVN set is explained as the membership functions represented as an object  in W  is 

denoted by   , , , , , , :P P P N N Nw T I F T I F w W   , the functions , ,P P PT I F are mapping 

from W   to [0,1]  and , ,N N NT I F are mapping from W   to [ 1,0] . 

Explanation 2.2 BSVN relation on W  
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Let W  be a non-empty set. Then we call mapping  , , , , , ,P P P N N NZ W T I F T I F  , 

     1 2, : 1,0 0,1NF w w W W     is a  BSVN relation on W  such that 

           1 2 1 2 1 2, 0,1 , , 0,1 , , 0,1P P P

Z Z ZT w w I w w F w w    

           1 2 1 2 1 2, 1,0 , , 1,0 , , 1,0N N N

Z Z ZT w w I w w F w w      .                 

Explanation 2.3 Let  
1 1 1 1 1 11 , , , , ,P P P N N N

Z Z Z Z Z ZZ T I F T I F  and  
2 2 2 2 2 22 , , , , ,P P P N N N

Z Z Z Z Z ZZ T I F T I F  be a 

BSVN graphs on a set W . If 2Z  is a BSVN relation on 1Z , then 

           
2 2 2 2 21 2 1 2 1 2, min , max ,P P P N N

Z Z Z Z ZT w w T w T w T w T w        

           
2 1 1 1 11 2 1 2 1 2, max , min ,P P P N N

Z Z Z Z ZI w w I w I w I w I w   

           
2 1 1 1 11 2 1 2 1 2, max , min ,P P P N N

Z Z Z Z ZF w w F w F w F w F w   for all 1 2,w w W  

Explanation 2.4. The symmetric property defined on BSVN relation Z on W  is explained by   

   1 2 2 1, ,P P

Z ZT w w T w w ,     1 2 2 1, ,P P

Z ZI w w I w w  ,    1 2 2 1, ,P P

Z ZF w w F w w  

   1 2 2 1, ,N N

Z ZT w w T w w ,     1 2 2 1, ,N N

Z ZI w w I w w  ,    1 2 2 1, ,N N

Z ZF w w F w w      

                                                                                                                        for all 1 2,w w W  

Explanation 2.5 BSVN graph 

The new graph in SVN is denoted by   ,G V E   is a pair  1 2,G Z Z , where 

 
1 1 1 1 1 11 , , , , ,P P P N N N

Z Z Z Z Z ZZ T I F T I F  is a BSVNS in V  and  
2 2 2 2 2 22 , , , , ,P P P N N N

Z Z Z Z Z ZZ T I F T I F  is 

BSVNS in 
2V  defined as  

      
2 1 11 2 1 2, min ,P P P

Z Z ZT w w T w T w  

      
2 1 11 2 1 2, max ,P P P

Z Z ZI w w I w I w  
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2 1 11 2 1 2, max ,P P P

Z Z ZF w w F w F w  

      
2 1 11 2 1 2, max ,N N N

Z Z ZT w w T w T w  

      
2 1 11 2 1 2, min ,N N N

Z Z ZI w w I w I w  

      
2 1 11 2 1 2, min ,N N N

Z Z ZF w w F w F w  for all 1 2,w w V  

 The BSVNSG of an edge denoted by 2

1 2w w V  

Explanation 2.6 Let  1 2,G Z Z  be a BSVNSG and 1 1,a c V  

A path 1 0 1 2 1 1: , , ,........ ,k kP a w w w w w c   in G  is sequence of distinct vertices such that 

     

     
2 2 2

2 2 2

1 1 1

1 1 1

, 0, , 0, , 0,
,

, 0, , 0, , 0

P P P

Z m m Z m m Z m m

N N N

Z m m Z m m Z m m

T w w I w w F w w

T w w I w w F w w

  

  

   
 
   
 

 1,2,..........,m k  and length of 

the path is k ,where is 1a  called initial vertex and 1c  is  called terminal vertex in the path.  

Explanation 2.7 A BSVN graph  1 2,G Z Z  of  ,G V E   is called strong BSVN graph 

if  

      
2 1 11 2 1 2, min ,P P P

Z Z ZT w w T w T w  

      
2 1 11 2 1 2, max ,P P P

Z Z ZI w w I w I w  

      
2 1 11 2 1 2, max ,P P P

Z Z ZF w w F w F w  

      
2 1 11 2 1 2, max ,N N N

Z Z ZT w w T w T w  

      
2 1 11 2 1 2, min ,N N N

Z Z ZI w w I w I w  

      
2 1 11 2 1 2, min ,N N N

Z Z ZF w w F w F w  for all  1 2,w w E  
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If 1 0 1 2 1 1: , , ,........ ,k kP a w w w w w c   be a path of length k   between 1a   and 1c   then  

      
2 2 21 1 1 1 1 1, , , , ,

k
P P P

Z Z ZT a c I a c F a c  and       
2 2 21 1 1 1 1 1, , , , ,

k
N N N

Z Z ZT a c I a c F a c  is defined as  

      

     
     
     

2 2 2

2 2 2 2 2 2

2 2 2

1 1 1 2 1 1

1 1 1 1 1 1 1 1 1 2 1 1

1 1 1 2 1 1

sup , , ..... , ,

, , , , , inf , , ..... , ,

inf , , ..... ,

P P P

Z Z Z k

k
P P P P P P

Z Z Z Z Z Z k

P P P

Z Z Z k

T a w T w w T w c

T a c I a c F a c I a w I w w I w c

F a w F w w F w c







   



   

   


 

      

     
     
     

2 2 2

2 2 2 2 2 2

2 2 2

1 1 1 2 1 1

1 1 1 1 1 1 1 1 1 2 1 1

1 1 1 2 1 1

sup , , ..... , ,

, , , , , inf , , ..... , ,

inf , , ..... ,

N N N

Z Z Z k

k
N N N N N N

Z Z Z Z Z Z k

N N N

Z Z Z k

T a w T w w T w c

T a c I a c F a c I a w I w w I w c

F a w F w w F w c







   



   

   


 

      
2 2 21 1 1 1 1 1, , , , ,P P P

Z Z ZT a c I a c F a c


 and       
2 2 21 1 1 1 1 1, , , , ,N N N

Z Z ZT a c I a c F a c


 is said to be 

the strength of connectedness between two vertices 1a   and  1c   in  G , where  

               
2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1, , , , , sup , , inf , , inf ,P P P P P P

Z Z Z Z Z Z
k N k Nk N

T a c I a c F a c T a c I a c F a c


 

 
  
 

 

               
2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1, , , , , inf , , sup , , sup ,N N N N N N

Z Z Z Z Z Z
k N k N k N

T a c I a c F a c T a c I a c F a c


  

 
  
 

 

If                2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1, , , , , , , ,P P P P P P

Z Z Z Z Z ZT a c T a c I a c I a c F a c F a c
  

    and 

               2 2 2 2 2 21 1 1 1 1 1 1 1 1 1 1 1, , , , , , , ,N N N N N N

Z Z Z Z Z ZT a c T a c I a c I a c F a c F a c
  

   then the 

arc 1 1a c  in G  is called  a strong arc. A path 1 1a c  is strong path if all arcs on the path are 

strong. 

3. BSVN detour distance 

Explanation 3.1   
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BSVN detour distance is defined as the length of , a-c  strong path between a and c  if there is 

no other strong path longer than P between a and c and we denote this by B.S.N.D(a, c). Any 

a-c strong path whose length is B.S.N.D(a, c) is called a a-c  BSVN detour path.  

4. BN detour boundary node of a BN graph 

Explanation 4.1 In a connected BN graph G, a node n2 is said to be a BN detour boundary 

node of a node n1 if B.N.D(n1, n2)   B.N.D(n1, n3) for each n3 in G, where n3 is a neighbor of 

n2. The set of all BN detour boundary nodes of n1 denoted by 1n B.N.D . 

Explanation 4.2 If the BN sub graph formed by strong neighbor of a node n2 in a BN graph 

G, form a complete BN graph then the node n2 is said to be a complete node of G. 

Theorem 4.3 A node in a complete BN graph is BN detour boundary node of every other 

nodes iff the node is complete. 

Proof. Let a node n2 be a complete node in a connected BN graph G. Let n1 be an another 

node of G. Each arc in G is strong, because of completeness of G [1]. So B.N.D(n1, n2) = V  

− 1 = B.N.D(n1, n3), 3n   N(n2), where V  = numbers of nodes in G.Therefore n2 is a BN 

detour boundary node of n1. 

Conversely, let n2 be a BN detour boundary node of every other node. Then each arc in G is 

strong, because of completeness of G [1]. Then B.N.D(n1, n2)  = V  − 1, 1n G. So all 

neighbor of n2 are strong neighbor. Hence by Explanation 4.2, the node n2 is complete.  

Theorem 4.4 If a node in a connected BN graph G is a complete node of G, then the node is 

a BN detour boundary node of all other node. 

Proof. Let a node n2  be a complete node in a connected BN graph G and let n1 be another 

node of G. Assume that n1 = w0, w1, . . . , wk−1, wk = n2 be a n1 − n2 BN  detour and n3 be a 

strong neighbor of n2. There arise two cases 
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Case 1: If n3 = wk−1, then B.N.D(n1, n3)   B.N.D(n1, n2). Hence n2 be a BN detour boundary 

node of n1. 

Case 2: If n3   wk−1, since n3 is a strong neighbor of n2, so the arc (n3, wk−1) is a strong arc 

and also n3   wk−1. So the length of the path n1 = w0, w1, . . . , wk−1, n3, wk = n2 is greater than 

than the length of the path n1 = w0, w1, . . . , wk−1, wk = n2. Hence B.N.D(n1, n3) B.N.D(n1, 

n2).Therefore n2 is a BN detour boundary node of n1. 

Theorem 4.5 A connected BN graph G is a BN tree iff G is BN  detour graph. 

Proof. Let G be a BN tree. Then between any two nodes in G, there is exactly one BN strong 

path. So B.N.D(n1, n2) = B.N.D(n1, n2) for any two nodes n1, n2 in G. Hence G is BN detour 

graph.  

Conversely, let G be a BN detour graph, which has V  nodes. Then B.N.D(n1, n2)= B.N.D(n1, 

n2)for any two nodes n1, n2 in G. If V  = 2 then G is a BN tree. 

Let V 3. If possible, let G be not a BN tree. So   two nodes p, q in G for which there is at 

least two strong path between p and q. Let Q1 and Q2 be two p−q bipolar neutrosophic strong 

paths. So Q1   Q2 has a cycle C(say) in G. If node n1 and n2 are adjacent nodes in G, then 

we have B.N.D(n1, n2) = 1 and B.N.D(n1, n2) > 1. This contradicts the fact that B.N.D(n1, n2) 

= B.N.D(n1, n2). Hence G is a BN tree. 

Theorem 4.6 In a BN tree G, a node n2 is a BN detour boundary node of G iff  n2 cannot be a 

BN cut node of G. 

Proof. Let G be a BN tree and a node n2 in G be a BN detour  boundary node of a node n3 in 

G. If possible, let n2 be a BN cut node of G. 

Let E be a BN maximum spanning tree in G, which is unique in G. Since n2  is a BN cut node, 

so n2 cannot be an internal node of E. Let x NB.N.S(n2) such that x does not lie on the BN 
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detour in E. Therefore B.N.D(p, q) is same when p, q be any two nodes of E and G both. But 

B.N.D(n3, x) = B.N.D(n3, n2)+B.N.D(n2, x) >B.N.D(n3, n2). This contradicts the fact that n2 is 

a BN detour boundary node of a node n3 in G. Therefore the node n2 cannot be a BN cut node 

of G. 

Conversely, let n2 be not a BN cut node of the BN graph G. So n2 is end node of maximum 

bipolar spanning tree, which is unique. Then n2 has a strong neighbor which is also unique 

[2]. So there does not exist any extension of any BN detour for a node x to n2. Hence n2 is a 

BN detour boundary node of G. 

Explanation 4.7 A node n1 in a BN graph G is said to be a BN end node of G if n2 is only 

strong neighbor of n1, where n2G. 

Theorem 4.8 A node n2 in a BN tree G is a BN detour boundary node iff n2 is a BN end node. 

Proof. Let a node n2 be a BN detour  boundary node for a node n1  in a BN tree G. Let E be a 

maximum bipolar spanning tree in G, which is unique in G [2]. By Explanation 4.7, each 

node of G is a BN cut node of G or a BN end node of G [2]. So by Explanation 4.7, n2 must 

be a BN end node of G. 

Conversely, let n2  be a BN end node of a BN tree G. Let E be the maximum bipolar spanning 

tree of G. Then n2  is a BN end node of E. Hence n2 is not a BN cut node of G. Therefore by 

Explanation 4.7, n2 is a BN detour boundary node of G. 

5. BN detour interior node of a BN graph 

In a connected BN graph G, a node n2 lie between the nodes n1 and n3 in the sense of BN 

detour distance if B.N.D(n1, n3) = B.N.D(n1, n2) + B.N.D(n2 , n3). 

Explanation 5.1 In a connected BN graph G, a node n2 is said to be a BN detour  interior 

node if for each node n1 in G different from n2 , there is a node n3 in G for which B.N.D(n1, 

n3) = B.N.D(n1, n2) + B.N.D(n2, n3). 
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Explanation 5.2 The set of all BN detour interior node of G, denoted by IntB.N.D (G), form a 

BN sub graph of G. 

Theorem 5.3 A node in a connected BN graph G is a BN detour boundary node of G iff the 

node cannot be a BN detour interior node of G. 

Proof. Let n2 be a BN detour boundary node of a node n1 in a connected BN graph G. If 

possible, let n2 be a BN detour interior node of G. So there exist a node n3 different from n1 

and n2 such that n2 lies between n1 and n3. 

Let U: n1 = w1,w2, . . . , n2 = wk,wk+1, . . . , wl = n3 be a n1 − n3 BN detour and 1 < k < l. Then 

wk+1NB.N.S(n2), and this implies B.N.D(n1, wk+1) > B.N.D(n1, n2), this is a contradiction. 

Hence n2 cannot be a BN detour interior node of G. 

Conversely, let a node n2 in G, which is not a BN detour interior node of G. Then there exist 

a node n1 in G for which any node n3 different from n1 and n2, B.N.D(n1, n3)  B.N.D(n1, 

n2)+B.N.D(n2, n3). Therefore B.N.D(n1, q) B.N.D(n1, n2) where q   NB.N.S(n2). This implies 

that n2 is a BN detour boundary node of n1. 

Theorem 5.4 A BN end node of a connected BN graph G cannot be a BN detour interior 

node. 

Proof. Let q be a BN end node of a BN graph G. Then there is only one BN strong neighbor 

of q. So there is no strong BN detour for which n2 lies between n1 and n3, where n1 and n3  be 

two node of G and also different from n2. Hence n2 is not a BN detour interior node of G.  

6. Application: 

 Modeling of wireless sensor network in terms of BSVN graph and determination of its 

boundary and interior stations 
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In a wireless sensor network, if the sensor failure or sensor give expansive errors or 

disconnection of network, then the capability of each station to capture the sense of 

occurrence  and communication between them are uncertain. Here we present a BN graph G 

(see Figure 1) which is applied on a wireless sensor network (W.S.N) to determine its 

boundary and interior station which is shown in Figure 1. The nodes  are  a, b, c, d, e, f of G 

represents the stations and each edge represents the communication between corresponding 

stations.  

The positive membership value of each nodes of G represents the capability of the station to 

capture the sense of occurrence. Its value is 0 if the capability is 5% and its value is 1 if the 

capability is  80%. So the positive membership value of each node lies in (0, 1) if the 

capability lies between > 5% and < 80%. The negative membership value of each node of G 

represents the disability of the station to capture the sense of occurrence (disability means it 

gives expansive error, change in sensor position or disconnection of network). Its value is 0 if 

the disability is   10% and its value is −1 if the disability is  75%. So the negative 

membership value of each node lies in (−1, 0) if the disability lies between > 10% and < 

75%. The positive membership value of each edge represents the ability to communicate of 

two corresponding stations. Its value is 0 if the ability is 25% and its value is 1 if the ability 

is 70%. So the positive membership value of each edge lies in (0, 1) if the ability lies 

between > 25% and < 70%. The negative membership value of each edge represents the 

disability to communicate of two corresponding stations. Its value is 0 if the disability is   

30% and its value is −1 if the disability is 80%. So the negative membership value of each 

edge lies in (−1, 0) if the disability lies between > 30% and < 80%. Here the middle value is 

called indeterminacy value of neutrosophic theory. This value is based upon the confusion 

between Truth value and falsity.   
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In W.S.N connecting and covering the whole area are very essential. If the sensor failure or 

sensor give expansive errors or disconnection of network to coverage the whole area, then we 

have to find out the boundary stations and interior stations of the W.S.N, which is equivalent 

to determine the BN detour boundary and interior nodes of G. 

 

Figure 1: Modeling of wireless sensor network in terms of BSVN graph 

For the BN graph in Figure 1,  

B.N.D(a, c) = 1,  B.N.D(a, b) = 3,  B.N.D(a, e) = 4,  B.N.D(a, d) = 1,  B.N.D(a, f) = 3,  

B.N.D(b,e) = 1,  B.N.D(b,d) = 2,   B.N.D(b,f) = 2,   

B.N.D(c,b) = 4,  B.N.D(c, e) =5,    B.N.D(c, d) = 2,  B.N.D(c,f) = 4,   

B.N.D(e, d) = 3,  B.N.D(e, f) = 3,  

B.N.D(d,f) = 2.  

So aB.F.D ={e},  cB.F.D = {e},  bB.F.D = {c},  eB.F.D = {c},  d B .F.D = {e}, 

f B.F.D = {c}. 

Therefore c, e are BN detour boundary nodes and a, b, e, d are BN detour interior nodes of G. 

Hence the stations at c, e are boundary stations and the stations a, b, d, f are the interior 

stations of the W.S.N. 
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