Interior and Boundary vertices of BSV Neutrosophic Graphs

Ch. Shashi Kumar, Department of Basic Science & Humanities, Vignan's Institute of Technology and Science, Deshmukhi, T.S, India.

T. Siva NageswaraRao, Division of Mathematics, Vignan's Foundation for Science Technology & Research (Deemed to be University), Vadlamudi, Guntur (Dt.), A.P, India.

Y. SrinivasaRao, Research Scholar, Department of Mathematics, AcharyaNagarjuna University, Guntur (Dt.), A.P. India

V. VenkateswaraRao, Division of Mathematics, Vignan's Foundation for Science Technology & Research (Deemed to be University), Vadlamudi, Guntur (Dt.), A.P, India.

Abstract---In the present article, we deduce a characterization of BSVN interior and boundary vertices. We established the relations between BSVN cut node and BSVN boundary nodes. Further, we studied properties of BSVN boundary nodes and BSVN interior nodes. Application of boundary node, interior is given on modeling wireless sensor network in terms of BSVN graphs.

Keywords---distance, BSVN boundary nodes, BSVN interior nodes

Introduction

The Neutrosophic sets launch by Smarandache [15, 16] is a great exact implement for the situation uncertainty in the real world. This uncertainty idea comes from the theories of fuzzy sets [9], intuitionistic fuzzy sets [6, 8] and interval valued intuitionistic fuzzy sets [7]. The representation of the neutrosophic sets are truth, indeterminacy and falsity value. These T, I, F values belongs to standard or nonstandard unit interval denoted by]-0, 1+[[10,14].

The idea of subclass of the NS and SVNS introduced by Wang et al. [17]. The idea of SVNS initiation by intuitionistic fuzzy sets [5,11], in this the functions Truth, Indeterminacy, Falsity are not dependent and these values are present within [0, 1] [12]. Neutrosophic theory is widely expands in all fields especially authors discoursed about topology with respect to neutrosophic [18].

Graph theory has at this time turn into a most important branch of mathematics. It is the division of combinatory. The Graph is a extensively important to analyze combinatorial complication in dissimilar areas in mathematics, optimization and computer science. Mainly significant object is well-known. The uncertainty on the subject of vertice and edges or both representation to be a fuzzy graph.

In a graph theory the new graph model was invites by using BSVN set is known as BSVN Graph (BSVNG). In [3, 4, 13] Broumi et al. explained BSVN graphs from the recall of fuzzy, bipolar fuzzy and single valued neutrosophic graphs.

In this manuscript, discus about BSVN graphs and neutrosophic usual distance between two vertices of the graph based on this define BSVN eccentricity, radius, diameter, center and periphery with respect to distance. Also find some important results on these topics.

I. Preliminaries:

Explanation 2.1 BSVN sets:-

A BSVN set is explained as the membership functions represented as an object in W is denoted by $\{\langle w, T^P, I^P, F^P, T^N, I^N, F^N \rangle : w \in W\}$, the functions T^P, I^P, F^P are mapping from W to [0,1] and T^N, I^N, F^N are mapping from W to [-1,0].

Explanation 2.2 BSVN relation on W

Let
$$W$$
 be a non-empty set. Then we call mapping $Z = (W, T^{P}, I^{P}, F^{P}, T^{N}, I^{N}, F^{N})$,
 $F^{N}(w_{1}, w_{2}) : W \times W \rightarrow [-1, 0] \times [0, 1]$ is a BSVN relation on W such that
 $T_{Z}^{P}(w_{1}, w_{2}) \in [0, 1], I_{Z}^{P}(w_{1}, w_{2}) \in [0, 1], F_{Z}^{P}(w_{1}, w_{2}) \in [0, 1]$
 $T_{Z}^{N}(w_{1}, w_{2}) \in [-1, 0], I_{Z}^{N}(w_{1}, w_{2}) \in [-1, 0], F_{Z}^{N}(w_{1}, w_{2}) \in [-1, 0]$.

 $\begin{aligned} & \text{Explanation 2.3 Let} \quad Z_{1} = \left(T_{Z_{1}}^{P}, I_{Z_{1}}^{P}, F_{Z_{1}}^{P}, T_{Z_{1}}^{N}, I_{Z_{1}}^{N}, F_{Z_{1}}^{N}\right) \text{ and } \quad Z_{2} = \left(T_{Z_{2}}^{P}, I_{Z_{2}}^{P}, F_{Z_{2}}^{N}, I_{Z_{2}}^{N}, F_{Z_{2}}^{N}\right) \text{ be a BSVN} \\ & \text{graphs on a set} \quad W \quad \text{If} \quad Z_{2} \text{ is a BSVN relation on } Z_{1} \quad \text{, then} \\ & T_{Z_{2}}^{P}\left(w_{1}, w_{2}\right) \leq \min\left(T_{Z_{2}}^{P}\left(w_{1}\right), T_{Z_{2}}^{P}\left(w_{2}\right)\right) \geq \max\left(T_{Z_{2}}^{N}\left(w_{1}\right), T_{Z_{2}}^{N}\left(w_{2}\right)\right) \\ & I_{Z_{2}}^{P}\left(w_{1}, w_{2}\right) \geq \max\left(I_{Z_{1}}^{P}\left(w_{1}\right), I_{Z_{1}}^{P}\left(w_{2}\right)\right) \leq \min\left(I_{Z_{1}}^{N}\left(w_{1}\right), I_{Z_{1}}^{N}\left(w_{2}\right)\right) \\ & F_{Z_{2}}^{P}\left(w_{1}, w_{2}\right) \geq \max\left(F_{Z_{1}}^{P}\left(w_{1}\right), F_{Z_{1}}^{P}\left(w_{2}\right)\right) \leq \min\left(F_{Z_{1}}^{N}\left(w_{1}\right), F_{Z_{1}}^{N}\left(w_{2}\right)\right) \\ & for all \quad w_{1}, w_{2} \in W \end{aligned}$

Explanation 2.4. The symmetric property defined on **BSVN** relation
$$Z$$
 on W is explained by
 $T_Z^P(w_1, w_2) = T_Z^P(w_2, w_1)$, $I_Z^P(w_1, w_2) = I_Z^P(w_2, w_1)$, $F_Z^P(w_1, w_2) = F_Z^P(w_2, w_1)$
 $T_Z^N(w_1, w_2) = T_Z^N(w_2, w_1)$, $I_Z^N(w_1, w_2) = I_Z^N(w_2, w_1)$, $F_Z^N(w_1, w_2) = F_Z^N(w_2, w_1)$ for all $w_1, w_2 \in W$

Explanation 2.5 BSVN graph

The new graph in SVN is denoted by $G^* = (V, E)$ is a pair $G = (Z_1, Z_2)$, where $Z_1 = (T_{Z_1}^P, I_{Z_1}^P, F_{Z_1}^P, T_{Z_1}^N, I_{Z_1}^N, F_{Z_1}^N)$ is a BSVNS in V and $Z_2 = (T_{Z_2}^P, I_{Z_2}^P, F_{Z_2}^P, T_{Z_2}^N, I_{Z_2}^N, F_{Z_2}^N)$ is BSVNS in V^2 defined as $T_2^P(\dots, V) \leftarrow (T_2^P(\dots, V)^{P}(\dots, V)^{P}(\dots, V))$

$$\begin{aligned} T_{Z_{2}}^{P}(w_{1},w_{2}) &\leq \min\left(T_{Z_{1}}^{P}(w_{1}),T_{Z_{1}}^{P}(w_{2})\right) \\ I_{Z_{2}}^{P}(w_{1},w_{2}) &\geq \max\left(I_{Z_{1}}^{P}(w_{1}),I_{Z_{1}}^{P}(w_{2})\right) \\ F_{Z_{2}}^{P}(w_{1},w_{2}) &\geq \max\left(F_{Z_{1}}^{P}(w_{1}),F_{Z_{1}}^{P}(w_{2})\right) \\ T_{Z_{2}}^{N}(w_{1},w_{2}) &\geq \max\left(T_{Z_{1}}^{N}(w_{1}),T_{Z_{1}}^{N}(w_{2})\right) \\ I_{Z_{2}}^{N}(w_{1},w_{2}) &\leq \min\left(I_{Z_{1}}^{N}(w_{1}),I_{Z_{1}}^{N}(w_{2})\right) \\ F_{Z_{2}}^{N}(w_{1},w_{2}) &\leq \min\left(F_{Z_{1}}^{N}(w_{1}),F_{Z_{1}}^{N}(w_{2})\right) \\ \text{for all } w_{1},w_{2} &\in V \end{aligned}$$
The BSVNSG of an edge denoted by $w_{1}w_{2} \in V^{2}$

Explanation 2.6 Let $G = (Z_1, Z_2)$ be a BSVNSG and $a_1, c_1 \in V$

A path $P:a_1 = w_0, w_1, w_2, \dots, w_{k-1}, w_k = c_1$ in G is sequence of distinct vertices such that $\begin{pmatrix} T_{Z_2}^P(w_{m-1}, w_m) > 0, \ I_{Z_2}^P(w_{m-1}, w_m) > 0, \ F_{Z_2}^P(w_{m-1}, w_m) > 0, \ F_{Z_2}^P(w_{m-1}, w_m) > 0, \ F_{Z_2}^N(w_{m-1}, w_m) > 0 \end{pmatrix}, \ m = 1, 2, \dots, k$ and length of the path

is k, where is a_1 called initial vertex and c_1 is called terminal vertex in the path.

$$\begin{aligned} & \text{Explanation 2.7 A BSVN graph} G = (Z_1, Z_2) \text{ of } G^* = (V, E) \text{ is called strong BSVN graph if } \\ & T_{Z_1}^{P}(w_1, w_2) = \min(T_{Z_1}^{P}(w_1), T_{Z_1}^{P}(w_2)) \\ & I_{Z_2}^{P}(w_1, w_2) = \max(I_{Z_1}^{P}(w_1), I_{Z_1}^{P}(w_2)) \\ & T_{Z_2}^{P}(w_1, w_2) = \max(T_{Z_1}^{P}(w_1), F_{Z_1}^{P}(w_2)) \\ & T_{Z_2}^{N}(w_1, w_2) = \max(T_{Z_1}^{N}(w_1), T_{Z_1}^{N}(w_2)) \\ & T_{Z_2}^{N}(w_1, w_2) = \min(I_{Z_1}^{N}(w_1), I_{Z_1}^{N}(w_2)) \\ & T_{Z_2}^{N}(w_1, w_2) = \min(F_{Z_1}^{N}(w_1), F_{Z_1}^{N}(w_2)) \\ & T_{Z_2}^{N}(w_1, w_2) = \min(F_{Z_1}^{N}(w_1), F_{Z_1}^{N}(w_2)) \\ & f = 0 \\ \text{If } P : a_1 = w_0, w_1, w_2, \dots, w_{k-1}, w_k = c_{-1} \text{ be a path of length } k \text{ between } a_1 \text{ and } c_1 \text{ then} \\ & (T_{Z_2}^{P}(a_1, c_1), I_{Z_2}^{P}(a_1, c_1), F_{Z_2}^{P}(a_1, c_1))^k \\ & (T_{Z_2}^{N}(a_1, c_1), I_{Z_2}^{P}(a_1, c_1), F_{Z_2}^{P}(a_1, c_1))^k \\ & (T_{Z_2}^{N}(a_1, c_1), I_{Z_2}^{N}(a_1, c_1), F_{Z_2}^{N}(a_1, c_1))^k \\ & (T_{Z_2}^{N}(a_1, w_1) \vee T_{Z_2}^{N}(w_1, w_2) \vee \dots \vee T_{Z_2}^{N}(w_{k-1}, c_1))^k, \\ & (T_{Z_2}^{N}(a_1, c_1), I_{Z_2}^{N}(a_1, c_1), F_{Z_2}^{N}(a_1, c_1))^k \\ & (T_{Z_2}^{N}(a_1, w_1) \wedge T_{Z_2}^{N}(w_1, w_2) \wedge \dots \wedge T_{Z_2}^{N}(w_{k-1}, c_1))^k, \\ & (T_{Z_2}^{N}(a_1, c_1), I_{Z_2}^{N}(a_1, c_1), F_{Z_2}^{N}(a_1, c_1))^k \\ & (T_{Z_2}^{N}(a_1, w_1) \wedge T_{Z_2}^{N}(w_1, w_2) \wedge \dots \wedge T_{Z_2}^{N}(w_{k-1}, c_1))^k, \\ & (T_{Z_2}^{N}(a_1, w_1) \wedge T_{Z_2}^{N}(w_1, w_2) \wedge \dots \wedge T_{Z_2}^{N}(w_{k-1}, c_1))^k, \\ & (T_{Z_2}^{N}(a_1, w_1) \wedge T_{Z_2}^{N}(w_1, w_2) \wedge \dots \wedge T_{Z_2}^{N}(w_{k-1}, c$$

$$\begin{pmatrix} T_{Z_2}^{P}(a_1,c_1), I_{Z_2}^{P}(a_1,c_1), F_{Z_2}^{P}(a_1,c_1) \end{pmatrix} \quad \text{and} \begin{pmatrix} T_{Z_2}^{N}(a_1,c_1), I_{Z_2}^{N}(a_1,c_1), F_{Z_2}^{N}(a_1,c_1) \end{pmatrix} \text{ is said to be the strength of connectedness between two vertices } a_1 \text{ and } c_1 \text{ in } G, \text{ where }$$

$$\left(T_{Z_{2}}^{P}(a_{1},c_{1}), I_{Z_{2}}^{P}(a_{1},c_{1}), F_{Z_{2}}^{P}(a_{1},c_{1}) \right)^{\infty} = \left(\sup_{k \in \mathbb{N}} \left\{ T_{Z_{2}}^{P}(a_{1},c_{1}) \right\}, \inf_{k \in \mathbb{N}} \left\{ I_{Z_{2}}^{P}(a_{1},c_{1}) \right\}, \inf_{k \in \mathbb{N}} \left\{ F_{Z_{2}}^{P}(a_{1},c_{1}) \right\} \right)$$

$$\left(T_{Z_{2}}^{N}(a_{1},c_{1}), I_{Z_{2}}^{N}(a_{1},c_{1}), F_{Z_{2}}^{N}(a_{1},c_{1}) \right)^{\infty} = \left(\inf_{k \in \mathbb{N}} \left\{ T_{Z_{2}}^{N}(a_{1},c_{1}) \right\}, \sup_{k \in \mathbb{N}} \left\{ I_{Z_{2}}^{N}(a_{1},c_{1}) \right\}, \sup_{k \in \mathbb{N}} \left\{ F_{Z_{2}}^{N}(a_{1},c_{1}) \right\} \right)$$

DOI: 10.5373/JARDCS/V12I2/S20201348 * Corresponding Author: Ch. Shashi Kumar, Email:skch17@gmail.com Article History: Received: Mar 22, 2020, Accepted: June 24, 2020

$$\begin{pmatrix} T_{Z_{2}}^{P}(a_{1},c_{1}) \ge \left(T_{Z_{2}}^{P}(a_{1},c_{1})\right)^{\infty}, I_{Z_{2}}^{P}(a_{1},c_{1}) \le \left(I_{Z_{2}}^{P}(a_{1},c_{1})\right)^{\infty}, F_{Z_{2}}^{P}(a_{1},c_{1}) \le \left(F_{Z_{2}}^{P}(a_{1},c_{1})\right)^{\infty} \end{pmatrix}$$
 and
$$\begin{pmatrix} T_{Z_{2}}^{N}(a_{1},c_{1}) \le \left(T_{Z_{2}}^{N}(a_{1},c_{1})\right)^{\infty}, I_{Z_{2}}^{N}(a_{1},c_{1}) \ge \left(I_{Z_{2}}^{N}(a_{1},c_{1})\right)^{\infty}, F_{Z_{2}}^{N}(a_{1},c_{1}) \ge \left(F_{Z_{2}}^{N}(a_{1},c_{1})\right)^{\infty} \end{pmatrix}$$
 then the arc

 a_1c_1 in G is called a strong arc.

A path $a_1 - c_1$ is strong path if all arcs on the path are strong.

BSVN distance

Explanation 3.1

BSVN distance is defined as the length *a-c strong* path between *a* and *c if* there is no other strong path longer than *P* between *a* and *c* and we denote this by B.S.N.d (a, c). Any *a-c* strong path whose length is *B.S.N.d* (a, c) is called a*a-c BSVN* path.

BN boundary node of a BN graph

Explanation 4.1 In a connected BN graph G, a node n_2 is said to be a BN *boundary* node of a node n_1 if $B.N.d(n_1, n_2) \ge B.N.d(n_1, n_3)$ for each n_3 in G, where n_3 is a neighbor of n_2 . The set of all BN boundary nodes of n_1 denoted by $n'_1 \ge N.D$

Explanation 4.2 If the BN sub graph formed by strong neighbor of a node n_2 in a BN graph G, form a complete BN graph then the node n_2 is said to be a complete node of G.

Theorem 4.3 A node in a complete BN graph is BN boundary node of every other nodes iff the node is complete.

Proof. Let a node n_2 be a complete node in a connected BN graph G. Let n_1 be a node of G. Each arc in G is

strong, because of completeness of G [1]. So $B.N.d(n_1, n_2) = 1 = B.N.d(n_1, n_3)$, $\forall n_3 \in N(n_2)$. Therefore n_2 is a BN boundary node of n_1 .

Conversely, let n_2 be a BN boundary node of every other node. Then each arc in G is strong, because of completeness of G [1]. Then $B.N.d(n_1, n_2) = 1$, $\forall n_1 \in G$. So all neighbor of n_2 are strong neighbor. Hence by Explanation 4.2, the node n_2 is complete.

Theorem 4.4 If a node in a connected BN graph G is a complete node of G, then the node is a BN boundary node of all other node.

Proof.Let a node n_2 be a complete node in a connected BN graph G and let n_1 be another node of G. Assume that $n_1 = w_0, w_1, \dots, w_{k-1}, w_k = n_2$ be a $n_1 - n_2$ BN and n_3 be a strong neighbor of n_2 . There arise two cases

Case 1: If $n_3 = w_{k-1}$, then $B.N.d(n_1, n_3) \leq B.N.d(n_1, n_2)$. Hence n_2 be a BN boundary node of n_1 .

Case 2: If $n_3 \neq w_{k-1}$, since n_3 is a strong neighbor of n_2 , so the arc (n_3, w_{k-1}) is a strong arc

and also $n_3 \neq w_{k-1}$. So the length of the path $n_1 = w_0, w_1, \ldots, w_{k-1}, n_3, w_k = n_2$ is greater than

than the length of the path $n_1 = w_0$, w_1 , ..., w_{k-1} , $w_k = n_2$. Hence $B.N.d(n_1, n_3) \le B.N.d(n_1, n_2)$. Therefore n_2 is a BN boundary node of n_1 .

Theorem 4.5 *A connected BN graph G is a BN tree iff G is BN graph.*

Proof.Let G be a BN tree. Then between any two nodes in G, there is exactly one BN strong path. So $B.N.d(n_1, n_2) = B.N.d(n_1, n_2)$ for any two nodes n_1 , n_2 in G. Hence G is BN graph.

Conversely, let G be a BN graph, which has |V| nodes. Then B.N. $d(n_1, n_2) = B.N.d(n_1, n_2)$ for any two nodes n_1, n_2 in G. If |V| = 2 then G is a BN tree.

Let $|V| \ge 3$. If possible, let G be not a BN tree. So \exists two nodes p, q in G for which there is at least two strong path between p and q. Let Q_1 and Q_2 be two p-q bipolar neutrosophic strong paths. So $Q_1 \cup Q_2$ has a cycle C(say) in G. If node n_1 and n_2 are adjacent nodes in G, then we have $B.N.d(n_1, n_2) = 1$. This contradicts the fact that $B.N.d(n_1, n_2) = B.N.d(n_1, n_2)$. Hence G is a BN tree.

Theorem 4.6 In a BN tree G, a node n_2 is a BN boundary node of G iff n_2 cannot be a BN cut node of G.

Proof. Let G be a BN tree and a node n_2 in G be a BN boundary node of a node n_3 in G. If possible, let n_2 be a BN cut node of G.

Let *E*be a BN maximum spanning tree in *G*, which is unique in *G*. Since n_2 is a BN cut node, so n_2 cannot be an internal node of *E*. Let $x \in N_{B,N,S}(n_2)$ such that *x* does not lie on the BN in *E*. Therefore B.N.d(p, q) is same when *p*, *q* be any two nodes of *E* and *G* both. But $B.N.d(n_3, x) = B.N.d(n_3, n_2)+B.N.d(n_2, x) > B.N.d(n_3, n_2)$. This contradicts the fact that n_2 is a BN *boundary* node of a node n_3 in *G*. Therefore the node n_2 cannot be a BN cut node of *G*.

Conversely, let n_2 be not a BN cut node of the BN graph G. So n_2 is end node of maximum bipolar spanning tree, which is unique. Then n_2 has a strong neighbor which is also unique [2]. So there does not exist any extension of any BN for a node x to n_2 . Hence n_2 is a BN boundary node of G.

Explanation 4.7 A node n_1 in a BN graph *G* is said to be a BN end node of *G* if n_2 is only strong neighbor of n_1 , where $n_2 \in G$.

Theorem 4.8 A node n_2 in a BN tree G is a BN boundary node iff n_2 is a BN end node.

Proof.Let a node n_2 be a BN boundary node for a node n_1 in a BN tree G. Let E be a maximum bipolar spanning tree in G, which is unique in G [2]. By Explanation 4.7, each node of G is a BN cut node of G or a BN end node of G [2]. So by Explanation 4.7, n_2 must be a BN end node of G.

Conversely, let n_2 be a BN end node of a BN tree G. Let E be the maximum bipolar spanning tree of G. Then n_2 is a BN end node of E. Hence n_2 is not a BN cut node of G. Therefore by Explanation 4.7, n_2 is a BN boundary node of G.

BN interior node of a **BN** graph

In a connected BN graph G, a node n_2 lie between the nodes n_1 and n_3 in the sense of BN distance if $B.N.d(n_1, n_3) = B.N.d(n_1, n_2) + B.N.d(n_2, n_3)$.

Explanation 5.1 In a connected BN graph G, a node n_2 is said to be a BN interior node if for each node n_1 in G different from n_2 , there is a node n_3 in G for which $B.N.d(n_1, n_3) = B.N.d(n_1, n_2) + B.N.d(n_2, n_3)$.

Explanation 5.2 The set of all BN *interior* node of G, denoted by $Int_{B.N.d}(G)$, form a BN sub graph of G.

Theorem 5.3 A node in a connected BN graph G is a BN boundary node of G iff the node cannot be a BN interior node of G.

Proof.Let n_2 be a BN boundary node of a node n_1 in a connected BN graph G. If possible, let n_2 be a BN interior node of G. So there exist a node n_3 different from n_1 and n_2 such that n_2 lies between n_1 and n_3 .

Let $U:n_l = w_1, w_2, \ldots, n_2 = w_k, w_{k+1}, \ldots, w_l = n_3$ be a $n_l - n_3$ BN and 1 < k < l. Then $w_{k+1} \in N_{B.N.S}(n_2)$, and this implies $B.N.D(n_l, w_{k+1}) > B.N.D(n_l, n_2)$, this is a contradiction. Hence n_2 cannot be a BN interior node of G.

Conversely, let a node n_2 in G, which is not a BN interior node of G. Then there exist a node n_1 in G for which any node n_3 different from n_1 and n_2 , $B.N.d(n_1, n_3) \neq B.N.d(n_1, n_2)+B.N.d(n_2, n_3)$. Therefore $B.N.d(n_1, q) \leq B.N.d(n_1, n_2)$ where $q \in N_{B,N,S}(n_2)$. This implies that n_2 is a BN boundary node of n_1 .

Theorem 5.4 *A BN end node of a connected BN graph G cannot be a BN interior node.*

Proof.Let q be a BN end node of a BN graph G. Then there is only one BN strong neighbor of q. So there is no strong BN for which n_2 lies between n_1 and n_3 , where n_1 and n_3 be two node of G and also different from n_2 . Hence n_2 is not a BN interior node of G.

References:

- [1] Anjali .N, S. Mathew and M.S. Sunitha, Some connectivity in bipolar fuzzy graphs,
- [2] Ann. Pure Appl. Math. 7 (2), 98–100, 2014
- [3] Akram M. and A. Farooq, Bipolar fuzzy tree, New Trends in Mathematical Science,
- [4] 4 (3), 58–72, 2016.
- [5] Broumi, S., Smarandache, F., Talea, M. and Bakali, A.: An Introduction to BSVNGraph Theory. Applied Mechanics and Materials, vol .841, 184- 191 (2016).
- [6] Broumi, S., Talea, M., Bakali, A., Smarandache, F.:On Bipolar Single Valued Neutrosphic Graphs. Journal of New Theory, N11, 84-102 (2016).
- [7] Broumi S, Singh PK, Talea M, Bakali A, Smarandache F, Venkateswara V Rao (2019) Single-valued neutrosophic techniques for analysis of WIFI connection. In: Proceedings of international conference on advanced intelligent systems for sustainable development AI2SD'2018, advances in intelligent systems and computing, 915: 405–512.
- [8] K. Atanassov, —Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, p. 87-96 (1986).
- [9] K. Atanassov and G. Gargov, —Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol.31, pp. 343-349 (1989).
- [10] K. Atanassov. Intuitionistic fuzzy sets: theory and applications. Physica, New York, 1999.
- [11] L. Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338-353
- [12] S. Broumi, M. Talea, A. Bakali, F.Smarandache, Prem Kumar Singh, M. Murugappan, and V. VenkateswaraRao, Neutrosophic Technique Based Efficient Routing Protocol For MANET Based On Its Energy And Distance. Neutrosophic Sets and Systems, vol. 24, pp. 61-69, Mar 2019.
- [13] S. Broumi, P. K. Singh, M. Talea, A. Bakali, F. Smarandache and V.VenkateswaraRao, Single-valued neutrosophic techniques for analysis of WIFI connection, Advances in Intelligent Systems and Computing Vol. 915, pp. 405-512,DOI: 10.1007/978-3-030-11928-7_36.
- [14] S. Broumi, A. Bakali, M. Talea, F.Smarandache and V. VenkateswaraRao, Interval Complex Neutrosophic Graph of Type 1, Neutrosophic Operational Research Volume III, V sub division, pp:88-107, 2018.
- [15] S. Broumi, A. Bakali, M. Talea, F.Smarandache and V. VenkateswaraRao, Bipolar Complex Neutrosophic Graphs of Type 1, New Trends in Neutrosophic Theory and Applications. Volume II, pp:189-208, 2018.
- [16] Smarandache, F., Broumi, S., Singh, P. K., Liu, C., VenkateswaraRao, V., Yang, H.-L., ...Elhassouny, A. (2019). Introduction to neutrosophy and neutrosophic environment. In Neutrosophic Set in Medical Image Analysis, 3–29.
- [17] Smarandache F., Neutrosophic set a generalization of the intuitionistic fuzzy set, Granular Computing, 2006 IEEE International Conference, 38 – 42,2006.
- [18] Smarandache, F. A geometric interpretation of the neutrosophic set A generalization of the intuitionistic fuzzy set Granular Computing (GrC), 2011 IEEE International Conference, 602 606, 2011.
- [19] H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued Neutrosophic Sets, Multisspace and Multistructure 4 (2010) 410-413.
- [20] V. VenkateswaraRao, Y. SrinivasaRao, Neutrosophic Pre-open Sets and Pre-closed Sets in Neutrosophic Topology, International Journal of ChemTech Research, Vol.10 No.10, pp 449- 458, 2017