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Abstract--- In this paper a systematic study is made, which is aimed at exploring a food chain model related to 
plants, the herbivore animals and carnivore animals and their impact on the global ecosystem. The study establishes 
the behavioural dynamics among the three participating species. The proposed model adopts a functional response 
traceable to Holling type-II for grazing of plants by herbivores and the hunting of the herbivores by the carnivores 
for their survival. The boundaries of the solution and Hopf bifurcation analysis are discussed at the positive steady 
state. The persistence (tendency of each specie to resist the invading specie), the global property of dynamic systems 
is discussed as a part of this study. The statistical randomness of population of each selected specie in the steady 
state of co-existence due to white noise is also computed. Finally, numerical illustrations are presented   to support 
the results of the study. 
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I. Introduction 
The interrelation between completely different biological process levels in an ecological food-chain system 

has induced interest in mathematical ecologists for a long time. The study of the dynamics of this relationship is one 
of the dominant subjects in mathematical ecology which can be obtained through the formulation and analysis of 
mathematical models. Primary producers and primary consumers are the building blocks of biological process levels 
in an ecological food chain system. Plants (the primary producers) are capable of producing their food requirement 
from photosynthesis or by inorganic oxidation. The primary consumers are herbivores which prey on primary 
producers, the plants for their food source. Again the primary consumers, the herbivores as a most favorable food 
source for carnivores. Often, there are instances of carnivores becoming prey to species of carnivores. The seasonal 
environmental fluctuations have also a profound effect on these factors. 

The food web models of those three species are elementary building blocks of huge scale ecosystem. The 
essential understanding of interactive dynamics of 3-species food cycle models are helpful to study the short term or 
long term behavior of ecosystems. The systems of differential equations can be used to model a food cycle which 
approximates species or the behavior of functional feeding group with various functional responses.  

Many of the ecological models considered in the ecological literature [16, 18, 19, 8] are constructed by involving 
functional responses. Mukhopadhyay, B. Bhattacharya [9] studied an ecological food chain model nutrient-
autotroph-herbivore model. In this model the Holling type-II functional response of herbivore is considered. Panja.P, 
Mondal. SK [11], Rangithkumar Upadhyay [13] studied a phytoplankton-Zooplankton and fish model having 
functional responses of any two species by third species is of Holling type-II. 

In nature, the life history of members of many species may be separated into distinct stages. These stages 
represent the flexibility and the resistance within species offered to natural enemies at different stages of its growth. 
It will have an effect on the persistence and extinction of biological population to varying degrees. Meng etall [25] 
investigates the steadiness and Hopf bifurcation in a three-species system with stage structure for the predation. 
Hariyanto [23] mentioned the analysis of the persistence of the dynamical system. 
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Many researchers observed that the environmental fluctuations also caused the different behaviors of the 
dynamic systems. J.Ripa [22] studied the effect of environmental noise in ecological food webs. R.M.May [21] 
investigated that the population has deviated more from steady states in a biological system involved in stochastic 
fluctuations by considering white noise for a population. Some of these studies motivated us to compute the 
population stochasticity around the steady state of co-existence due to white noise. 

II. The Food Chain Model 
In this paper, the plants act as resource biomass. The herbivores grow by eating plants and a carnivore grows by 

eating herbivores. In this model of Plants-Herbivores-Carnivores (P-H-C), plants are purely prey. Herbivores are 
food source for carnivores and simultaneously food source for herbivores is plants population. Here herbivore acts 
as both prey and predator simultaneously. 

P(t), H(t) and C(t) denote the density of plants, herbivores and carnivores respectively at any instant of time t. 

Assumptions 
i. The parameters r and s are intrinsic growth rates of plants and herbivores respectively, and it is also 

assumed that the growth of the plants and herbivores is logistic.  

ii. The parameters 1β and 1γ  denote the attack rate at which the single herbivores searches for plant and the 
single carnivores searches for herbivores, whenever predator is not currently consuming prey item. 

iii. The parameters 1α and 2α  are half saturation levels of Herbivores and carnivores respectively. 

iv. The parameters k and l  are carrying capacities of plant populations and herbivores population respectively. 

v. The parameter 0β is the mortality rate of the carnivores. 

vi. The term  
1

1

( , ) PHF P H
P

β
α

=
+  represents the functional response for feeding of plants by herbivores. 

Here 1α  is the half saturation constant. 

vii. The term  
1

2

( , ) HCG H C
H

γ
α

=
+  indicates the functional response for feeding of herbivores by carnivores. 

The P-H-C food chain model is mathematically represented as follows: 

1

1

2 1

1 2

2
0

2

1

1

.

PHdP PrP
dt k P

PH HCdH HsH
dt l P H

HCdC C
dt H

β
α
β γ
α α

γ β
α

 = − −  + 

 = − + −  + + 

= −
+

     (2.1) 

The system (2.1) has thirteen parameters.  It is evident that dealing a system having more number of parameters 
is challenging and required more complicated analysis. Reformulating a model in dimensionless type is 
helpful from many aspects. This procedure will facilitate to see the consistency of the model equations and 
ensure that each one terms have an equivalent set of units in equation. Additionally, non-dimensionalizing a model 
reduces the amount of free parameters and divulges a smaller set of quantities that govern the dynamics. 

By non-dimensionalization, define 

i) Non dimensional time: .t t τ= 

 

ii) Non dimensional plant density: .P P P
⊕

=


 

iii) Non dimensional herbivore density: .H H H
⊕

=

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iv) Non dimensional carnivore density: .C C C
⊕

=


, where , ,P H C
⊕ ⊕ ⊕

 and τ are time independent constants. 
By substitution these expressions, system (2.1) becomes 

1

1

2 1

1 2

2
0

2

.1
.

( . )1
. .

.
.

P H Hd P P Pr P
kd t P P

P P H H C Cd H H Hs H
ld t P P H H

H H Cd C C
d t H H

β ττ
α

β τ γ ττ
α α

γ τ β τ
α

⊕⊕

⊕

⊕ ⊕⊕

⊕ ⊕

⊕

⊕

 
 = − −
  + 
 
 = − + −
  + + 

= −
+

  



 

    



  

 



 

 

By choosing
1 0

1 1, , ,k lP H C
r s

τ
τ τ γ τ β

⊕ ⊕ ⊕

= = = = , the non-dimensional form of system (2.1) is 

2
1

2
2

3

( , , )

= H ( , , )                    

( , , ).

dP PHP P Pf P H C
dt P
dH PH HCH H f P H C
dt P H

dC HC C Cf P H C
dt H

βα
γ
λδ
γ µ

ρ
µ

= − − =
+

= − + −
+ +

= − =
+

       (2.2)

 

Where 

1 1 2 2 2

0 0 0 0

, , , , , , .l r k s lr s
s k r l s
β α β α γα β γ δ λ µ ρ

β β β β
= = = = = = =

 

III. Existence and Boundedness of the System 
The right-hand side of system (2.2) is continuous and has continuous partial derivatives on the state 

space ( ){ }3 3, , : 0, 0, 0R P H C R P H C+ = ∈ ≥ ≥ ≥ . Therefore, the solution of the system (2.2) with non-

negative initial condition exists; it is unique, and uniformly bounded.  

Theorem (3.1) when ( ){ }min ,η α δ≤ and β λ> , 1ρ < , the solutions of system (2.2) are uniformly bounded  
for the positive parameterη . 

Proof: - consider ( ), ,P H C  be the solution of the system (2.2) with positive initial condition such that  

W P H C= + + , then
dW dP dH dC
dt dt dt dt

= + + . 

( ) ( )2 2( ) 1dW PH HCP P H H C
dt P H

α δ β λ ρ
γ µ

= − + − − − − − −
+ +  

Assume that β λ> and 1ρ < , then 

2 2 2 2( ) (2 2 )dW P P H H C P P H H
dt

α δ α δ≤ − + − − ≤ − + −  

When ( ){ }min ,η α δ= , then 

( ) ( )2 22 2 2 2(dW W P H
dt

η α α δ δ α δ υ+ ≤ − − + − − ≤ + =  

tdW W W me
dt

ηυη υ
η

−+ ≤ ⇒ = + , where (0)m W υ
η

= −
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( ) ( )( (0) 1 0, , ( )t t tW W e e W eP H C η η ηυ υ υ
η η η

− − − 
⇒ ≤ + − ≤ − + 

 
 

As t →∞ , ( )W t  lies between 0 and
υ
η

, provided β λ> and 1ρ < . 

Therefore, the region ( ) 3, , :P H C R W P H c υ
η+

 
Ω = ∈ = + + ≤ 

 
 in which the solutions of the system 

(2.2) are uniformly bounded.                      

IV. Steady States 

The system has the following six steady state solutions resulting from 0, 0, 0dP dH dC
dt dt dt

= = = . 

a) The trivial steady state 0 (0,0,0).E =  

b) The steady state 1 (0, ,0)E δ= . 

c) The steady state 2 ( ,0,0)E α= . 

d) The boundary steady state   3 (0, , )E H C
− −

=   on the H-C plane  

Where ( ), 1
1

H µρ ρ
ρ

−

= >
−

 and
1 1

C µρ µδ
ρ ρ

−  
= − − − 

. 

e) The planar steady state 4 ( , ,0)E P H
∧ ∧

=  on the P-H plane, where 

PH
P

λδ
γ

∧
∧

∧= +
+

and ( ) ( )21 4
2

P Hα γ α γ β αγ
∧ ∧  = − ± − − −  

   
 

f) The positive steady state 5 ( , , )E P H C
∗ ∗ ∗

= , where 

( ), 1
1

H µ ρ
ρ

∗

= >
− ( ) ( ) ( )2 11 4

2 1
P

βµ αγ ρ
α γ α γ

ρ

∗  − − 
 = − ± − −  −   

and 

( )
( ) ( )

*

2

1
.

1
P

C
P

ρ λµ δρ δ µ
ρ γ

∗

∗

 − = + − +
 − + 

 

V. Existence and Stability Analysis of Steady States 
Clearly, the three steady states 0 1,E E  and 3E  always exist and stable. 

Theorem (5.1): If   
( )1

( ) 2
αγ δ µρ

αγ δ µ µβδ
+

< <
+ −

, the boundary steady state 3 (0, , )E H C
− −

=  exists and it is 

stable. 

Proof:-For the point  3 (0, , )E H C
− −

=  the corresponding Jacobian Matrix is 

ISSN 1943-023X                     2520 
Received: 02 Nov 2018/Accepted: 17 Apr 2019 



Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 04-Special Issue, 2019 

( )
11

3 21 22 23

32

0 0
,

0 0

a
J E a a a

a

 
 =  
 
   

Where 

( ) ( ) ( )11 21 22 23 32
2 1, , , , 1

1 1 1
a a a a aβµ λµ δ µ µα δ ρ µ

γ ρ γ ρ ρ ρ ρ
+

= − = = − = − = − −
− − −

 

The characteristic equation of ( )3J E   is ( ) 2
11 22 23 32 0.a a a aλ λ λ − − − =  If 11 220, 0a a< <  

and 23 32 0a a < , which implies that
( )1

( ) 2
αγ δ µρ

αγ δ µ µβδ
+

< <
+ −

.The steady state 3 (0, , )E H C
− −

=  is stable, 

otherwise it is unstable.  

Theorem (5.2) Along with the condition stated in theorem (5.1), the steady state 3 (0, , )E H C
− −

=   is globally 

stable in the H-C plane ifµ δ=  

Proof: For any initial value in the H-C plane, the system (2.2) becomes 

( )2
1 ,dH HCH H g H C

dt H
δ

µ
= − − =

+   And 
( )2 ,dC HC C g H C

dt H
ρ

µ
= − =

+ . 

Assume that ( , ) HM H C
C

µ +
= , clearly ( , ) 0 ( , )M H C H C> ∀ ∈ interior of 2R+ .  

Now 

[ ] ( )
( ) ( ) ( )( )1

2

, 1 1. ( , ) . . 2 2
,

dH
g H CHdtM H C H H
g H CdC C C C C

dt

µ δ µ µ δ

 
    + ∇ = ∇ == − + = − + −     

      
  

 

Whenµ δ= , this expression reduces to ( )1 2 0H
C

− < , which is negative everywhere .Then according to 

Bendixson-Dulac theorem, the periodic solutions does not exists in H-C plane. Since, all the solutions of the system 
are bounded and 3E are unique positive steady state in H-C plane; hence by Poincare Bendixson-Dulac theorem the 

steady state 3 (0, , )E H C
− −

= is globally stable. 

Theorem (5.3) Assume that the condition in the theorem (5.1) holds and if    
( )P H H

P

γ
λ

− + − 
 <  then the 

steady state 3E  is globally stable. 

Proof: Consider the function 

( )1 1 2, ln lnH CV H C l H H H l C C C
H C

− − − −

− −

     
 =  − −  + − −              

, which is positive definite and 1l , 2l are 

positive constants to be determined. 
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1
1 2. .dV H H dH C C dCl l

dt H dt C dt

− −   − −   = +
   
   

 

2

1 1 2 1

H H C C H H C C P H H
l H H l l l

PH H

µ λ

γµ µ

− − − − −

−

− −

       − − − − −                = − − − + +  +  + +
 

By choosing non-negative constants 

( )
1

H
l

H H

µ µ

µ

−

−

  +    =
 + 
 

, 2 1l = , and   if 
( )P H H

P

γ
λ

− + − 
 <  

1 0dV
dt

< , Therefore by Lyapunov theorem the steady state 3 (0, , )E H C
− −

=  is globally stable.  

Theorem (5.4) The steady state 4 ( , ,0)E P H
∧ ∧

=  exists, if ( ) 22 , 2γ α β δ λ γ αγ< + + < and βδ αγ< . 

Proof: Let ,P H
∧ ∧

 are the solutions of the equations: 0HP
P

βα
γ

∧
∧

∧− − =
+

 and 

0P CH
P H

λδ
γ µ

∧ ∧
∧

∧ ∧− + − =
+ +

.By solving first equation 
PH

P

λδ
γ

∧
∧

∧= +
+

and by substituting it in the second 

equation we get ( ) ( ) ( )
3 2

22 2 0P P Pα γ αγ β δ λ γ γ αγ βδ
∧ ∧ ∧

 − − − − + − − − =  .By Descartes’ rule of sign, 

the positive solution P
∧

 exists, if ( ) 22 , 2γ α β δ λ γ αγ< + + < and βδ αγ< .Therefore, the positive 

solutions
PH

P

λδ
γ

∧
∧

∧= +
+

 and ( ) ( )21 4
2

P Hα γ α γ β αγ
∧ ∧  = − ± − − −  

   
are exists, 

 if ( ) 22 , 2γ α β δ λ γ αγ< + + < , βδ αγ<  

Theorem (5.5): The steady state 4 ( , ,0)E P H
∧ ∧

= is locally asymptotically stable,  

if 33 11 220, 0c c c< + < and 11 22 12 21 0c c c c− >  otherwise, it is unstable. 

Proof: For the point 4 ( , ,0)E P H
∧ ∧

= the corresponding variation matrix is 

( )
11 12

4 21 22 23

33

0

0 0

c c
J E c c c

c

 
 =  
 
   

Where 
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11 12 21 22 23 332 2, , , , , 1H P H H Hc P c c c H c c
H HPP P

βγ β αγ ρ

µ µγγ γ

∧ ∧ ∧ ∧ ∧
∧ ∧

∧ ∧∧∧ ∧

− −
= − = = = − = = −

     + +++ +         . 
The characteristic equation of ( )4J E is ( ) ( ) ( )2

33 11 22 11 22 12 21 0c c c c c c cλ λ λ − − + + − =  and the Eigen 

values are 1 33 2 3 11 22 2 3 11 22 12 21, , .c c c c c c cλ λ λ λ λ= + = + = − .If 33 11 220, 0c c c< + < and 11 22 12 21 0c c c c− > , 

then the steady state 4 ( , ,0)E P H
∧ ∧

=   is locally asymptotically stable otherwise, it is unstable. 

Theorem (5.6) Along with the conditions stated in theorems (5.4) and (5.5), and if γ α=  

The steady state 4 ( , ,0)E P H
∧ ∧

= is globally stable in the P-H plane. 

Proof: For any initial value in the P- H plane, the system (2.2) becomes 

 ( )2
3 ,dP PHP P g P H

dt P
βα

γ
= − − =

+
and ( )2

4 ,dH PHH H g P H
dt P

λδ
γ

= − + =
+

 

Let ( , ) PM P H
PH
γ +

= , clearly ( , ) 0 ( , )M P H P H> ∀ ∈ interior 2R+ . 

Now  

[ ] ( )
( ) ( )3

4

, 1. ( , ) . . 2
,

dP
g P HP PdtM P H P
g P HdH PH H P

dt

γ γγ α

 
    + − +   ∇ = ∇ = + − −                 
  

, whenγ α= , this expression 

reduces to [ ]1 2 0PP
H P

γ− + − < 
 

 which is negative everywhere. Then according to Bendixson-Dulac theorem, 

the periodic solution does not exists in P-H plane. Since, all the solutions of the system are bounded and 3E are 
unique positive steady state in P-H plane; hence by Poincare Bendixson-Dulac theorem the steady state 

4 ( , ,0)E P H
∧ ∧

= is globally stable.  

Theorem (5.7) Assume that the condition in the theorem (5.4) holds and if ( )H P Pβ γ γ
∧ < + + 

 
  the 

planar steady state 4 ( , ,0)E P H
∧ ∧

=  is globally asymptotically stable. 

Proof:-Consider the function 

( )2 1 2, ln lnP HV P H m P P P m H H H
P H

∧ ∧ ∧ ∧

∧ ∧

      
=  − −  +  − −                

, where 1m and 2m are positive constants 

to be determined. 

2
1 2. .dV P P dP H H dHm m

dt P dt H dt

∧ ∧   − −   = +
   
     
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( ) ( ) ( )

2

2 2
2

1 2 1 1 1

P P H H P P H H P P H
dV m P P m H H m m P m
dt P P P P P P

β
βγ β

γ γ γ γ γ γ

∧ ∧ ∧ ∧ ∧

∧ ∧

∧ ∧ ∧

       − − − − −                  = − − − − − − + +             + + + + + +     
       

( )
2 2

P P H H H H
m m C

HP P
λγ

µγ γ

∧ ∧ ∧

∧

    − − −    
    −

+ + + 
  . 

By Choosing non-negative constants 1 1m = , ( )
2

P
m

β γ
λγ
+ 

=  
 

  and If ( )H P Pβ γ γ
∧ < + + 

 
, 

2 0dV
dt

< .Therefore, by Lyapunov theorem the steady state 4 ( , ,0)E P H
∧ ∧

=  is globally asymptotically stable.

 Theorem (5.8): The interior equilibrium point 5 ( , , )E P H C
∗ ∗ ∗

=  exists, if 

1ρ > , ( )2 4
1

βµα γ αγ
ρ

 
− > − − 

and
( ) ( )

*

*

1 P

P

ρ λ
δρ δ µ

γ

 − + > +
 + 

. 

Proof:-Let , ,P H C
∗ ∗ ∗

are positive solutions of the equations

*
*

* 0,HP
P

βα
γ

− − =
+

* *
*

* * 0P CP
P H

λδ
γ µ

− + − =
+ +

 

and

*

* 1 0H

H

ρ

µ
− =

+
. By solving these equations we obtain 

 ,
1

H µ
ρ

∗

=
−

( ) ( ) ( )2 11 4
2 1

P
βµ αγ ρ

α γ α γ
ρ

∗  − − 
 = − ± − −  −   

and
( )

( ) ( )
*

2

1
1

P
C

P

ρ λµ δρ δ µ
ρ γ

∗

∗

 − = + − +
 − + 

.  

Hence, the interior steady state 5 ( , , )E P H C
∗ ∗ ∗

=   exists, if ( ) ( )2 4 1
1

andβµα γ αγ ρ
ρ

 
− > − > − 

, 

( ) ( )
*

*

1 P

P

ρ λ
δρ δ µ

γ

 − + > +
 + 

. 

Theorem (5.9): The interior steady state 5 ( , , )E P H C
∗ ∗ ∗

=  is locally asymptotically stable, if 

1 30, 0B B> > and ( )1 2 3 0B B B− > , otherwise, it is unstable. 

Proof:-For the point  5 ( , , )E P H C
∗ ∗ ∗

=  the corresponding Jacobian matrix is  

( )
11 12

5 21 22 23

32

0
,

0 0

b b
J E b b b

b

 
 =  
 
   
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Where
* * * * * * * *

* *

11 12 21 22 23 32* * 2 2 * 2* * *
, , , , , .H P P H C H H Cb P b b b H b b

P P HP H H

β β λγ µρ

γ γ µγ µ µ

−
= − = = = − = − =

     + + ++ + +     
     

 

The characteristic equation of ( )5J E is 3 2
1 2 3 0B B Bλ λ λ+ + + = . 

Here 1B ( ) ( )11 22 2 11 22 32 23 12 21 3 11 32 23, , .b b B b b b b b b B b b b= − + = − − =  

Now
 

* *

2 2
1 1 2 3*2 2

2 3

H PB N N N
N N H

 
 = +
 
 

;

** *
22
3

3 3 2
2 3

N HPCB
N N

βµ ρ  − =
 
 

; and 1N , 2N are defined by  

* *
2 2 2 2

1 2 3 3 2N N N CN P Nβ 
= − + 

 
,

*

2 0N Hµ = + > 
 

, 
*

3 0N Pγ = + > 
 

.If 
2 2
2 3

2
2

N N

C H P N
β ∗ ∗ ∗<

+
, the coefficients 

of characteristic equation 1 0B >  and 3 0B > . Again, 

 consider ( )( ) ( )1 2 3 11 22 12 21 11 22 22 32 23B B B b b b b b b b b b∆ = − = + − + . 

* *
2 2 2* *

3 2* * * *
2 2 2 2

1 2 3 3 2 *2 2 3
32 3 3
2

. .
C N N C

P H N H P N N H N C N
N N N P N

µ ρ
λβγβ

  −          ∆ = + − − + +           
  

 

1 2 3 0B B B⇒∆ = − > if

*
2 3 *

2 22 3 *
2 3
3 * * *

3 2 2
2 1 2 3

C N N C NN H
P N N H P N N

µ ρλ β
βγ

  −     > − +      +    

.Therefore 

By Routh-Hurwitze criteria, the interior steady state 5 ( , , )E P H C
∗ ∗ ∗

=  is locally asymptotically stable, 

if. 1 30, 0B B> > and ( )1 2 3 0B B B− > . 

Theorem (5.10) Along with the conditions stated in the theorems (5.7), (5.8) and if ( )
*

H P Pβ γ γ < + + 
 

 

the steady state 5 ( , , )E P H C
∗ ∗ ∗

=  is globally asymptotically stable. 

Proof: Consider the positive definite function 

( )
* * * * * *

3 1 2 3* * *, , ln ln lnP H CV P H C n P P P n H H H n C C C
P H C

         
 =  − −  +  − −  + − −                        

, 

where 1 2,n n  and 3n  are positive constants to be determined. 
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* * *

3
1 2 3. . .dV P P dP H H dH C C dCn n n

dt P dt H dt C dt

     − − −     = + +
     
     

 

( ) ( ) ( )

2* * * * *

2 2* *
3

1 2 1 1 1* * *

P P H H P P H H P P HdV n P P n H H n n P n
dt P P P P P P

β
βγ β

γ γ γ γ γ γ

       − − − − −                  = − − − − − − + +             + + + + + +     
     

 

( )

* * *

*

3 2 2*
. 1

P P H H H H
Hn C C n n C

H HP P

ρ λγ
µ µγ γ

    − − −           − − + −   + +     + + 
 

. 

Chose non-negative constants ( )
1 21,

P
n n

β γ
λγ
+ 

= =  
 

*

2
3 *

C Hnn
C C µ

 
 
 =
  −    

, and if ( )
*

H P Pβ γ γ < + + 
   

,
3 0dV

dt
<

. Therefore by Lyapunov theorem the steady state 5 ( , , )E P H C
∗ ∗ ∗

=  is globally asymptotically stable. 

VI. Hopbifurcation 
In the present study, various parameters have been used to exhibit the behavior of dynamical system. PHC 

models with constant parameters are frequently found to approach a steady state where species coexist in 
equilibrium. The behavior of a system may change in relation to the parameters used in the model. Such parameters 
which cause the transition in a system are named as bifurcation points. At any point where the system has nontrivial 
periodic solutions, a Hopf bifurcation occurs. 

The following theorem established that Hopfbifurcation occurs for the system (2.2) at a critical valueλ λ
∗

= .For 
proving this, we follow Liu [7] approach. 

Theorem (6.1) Assume that
2 2
2 3

2
2

N N

C H P N
β ∗ ∗ ∗<

+
 holds, then a simple Hopfbifurcation of the system (2.2) occurs 

atλ λ
∗

= . 

Proof. Assume that the local stability conditions hold, and  

let
*

2 3 *
2 22 3* *

2 3
3 * * *

3 2 2
2 1 2 3

C N N C NN H
P N N H P N N

µ ρλ β
βγ

  −     = − +      +    

, then 

* *

2 2
1 1 2 3*2 2

2 3

0H PB N N N
N N Hλ λ

∗
=

 
 = + >
 
 

, 
22

3
3 3 2

2 3

0N HPCB
N Nλ λ

βµ ρ
∗

∗∗ ∗

=

 − = >
 
 

 

And
* *

* *
2 2

1 2 32 5
2 3

0d P H N H P N N
d N Nλ λ

βγ
λ ∗

=

∆  = + ≠  
 

Therefore, 0d
d λ λλ ∗

=

∆
≠ .Hence, a simple Hopf bifurcation occurs atλ λ

∗

= . The graphical presentation has been 

shown in Fig. 6 and Fig. 8. 
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VII. Persistence Analysis 
In this section, the persistence of system (2.2) is studied. When each and every species inside a system is 

persistent, the system as a whole is said to be persistent. As per the approach made by Freedman and Waltman [20], 
the system is said to be persistence when the solution of the system does not possess Omega Limit Set with non-
negative initial condition on its boundary planes.  

Theorem (7.1) Assume that the steady state 4 ( , ,0)E P H
∧ ∧

= is a globally stable in the PH-plane. Then the 
necessary and sufficient conditions for the persistence of the system (2.2) are 

1 1 0H

H

ρλ
µ

∧

∧

 
 = − ≥
 + 

and 1 1 0H

H

ρλ
µ

∧

∧

 
 = − >
 + 

   (7.1) 

Proof: The boundedness of the solution and the global stability of the system (2.2) are proved in theorems (3.1) 
and (5.7) respectively. Also, whenever the steady state 4E exists, the Eigen value 1λ  gives the stability in the 

positive direction orthogonal to PH- plane. If 1λ < 0, there are orbits in the positive cone approach steady state 4E . 

Therefore H Hρ µ
∧ ∧

≥ + is the necessary condition for the persistence of the system (2.2). 

For the sufficient condition H Hρ µ
∧ ∧

> + , by Freedman and Walt man theorem [5, 20], the growth 

functions 1, 2, 3f f f of the system (2.2) satisfies the following hypothesis 

i) 

1 1

2 2

3 3

0, 0

10, 0

0, 0

f f
H P C
f f
P P C H
f f
P H H

β
γ
λ

γ µ
ρ

µ

∂ ∂−
= < =

∂ + ∂
∂ ∂ −

= > = <
∂ + ∂ +
∂ ∂

= = >
∂ ∂ +

 

ii) In the absence of predator, the prey population grows to carrying capacity. That 

is ( )1 0,0,0 0f α= > , ( )2 0,0,0 0f δ= > and 1 ( ,0,0) 1 0,f P
P
∂

= − <
∂

2 (0, ,0) 1 0f H
H
∂

= − <
∂

. 

Further, the predator extinct (i.e. 3 (0,0,0) 1 0f = − < ) in the absence of the prey, 

iii) The parameters ,β λ  are positive. Therefore, there are no steady states HC and PC planes.  

iv) When the carnivores are not present, the herbivores can survive on its prey. Therefore there exists steady 

state 4 ( , ,0)E P H
∧ ∧

=   in the PH-plane, such that 1 2( , ,0) ( , ,0) 0.f P H f P H
∧ ∧ ∧ ∧

= = hence, the system (2.2) 
persists if the condition (7.2) is satisfied. 

Theorem (7.2) for each limit cycle ( ) ( )( )1 2,t tϕ ϕ  the condition for persistence of the system is in the 

form ( )3 1 2
0

, ,0 0
T

f dtϕ ϕ >∫ ,               (7.2) 

 Where T is the time period of the limit cycle, such that the condition (7.2) holds and the PH-plane consists of a 
finite number of limit cycles.  

Proof: - When the existence of a limit cycle in PH-plane is assumed, the Jacobean matrix about the 
cycle, 1 2, , 0P H Cϕ ϕ= = = is 
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( )

1 1
1 1 1

2 2 2
1 2 2 2 2

3

0

( ), ( ),0

0 0

f ff
P H

f f fV t t
P H C

f

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

∂ ∂ + ∂ ∂ 
∂ ∂ ∂ =  ∂ ∂ ∂

 
 
  

   (7.3) 

Where the partial derivatives and if ( 1, 2,3)i = in (7.3) are determined at ( )1 2, ,0ϕ ϕ .  

With the initial condition 0 0 0( , , , )t p h c , consider the solution of the system (2.2) exists and which is close 

to ( )1 2, ,0ϕ ϕ . 

From the variation matrix (7.4), a solution of the system ( )3 1 2( ), ( ),0 .C f t t C
t

ϕ ϕ∂
=

∂
with (0) 1C =  

is
0

C
c
∂
∂

Thus 
( )3 1 2

0

( ), ( ),0

0 0 0
0

( , , , )

t

f s s dsC t p h c e
c

ϕ ϕ∫∂
=

∂
 .  

Now, by applying Taylor’s expansion, we have 
( )3 1 2

0

( ), ( ),0

0 0 0 0 0 0( , , , ) ( , , ,0) . .

t

f s s ds

C t p h c C t p h c e
ϕ ϕ∫

− ≅ Then C 

decrease or increase according to ( )3 1 2
0

, ,0
T

f dtϕ ϕ∫  is negative or positive respectively.  The solution curves are 

away from the PH-plane if conditions (7.2) and (7.3) hold, since the PH-plane consists of a finite number of limit 
cycles.  

VIII. Stochastic Analysis 
In this section the stochastic version of the model has been formulated to take the influence of the random noise 

which in the form of additive Gaussian white noise to the model (2.2).The model is 

2
1 ( )dP HP P P k t

dt P
βα ξ
γ

= − − +
+

                                       (8.1) 

2
2 2 ( )dH P HCH H H k t

dt P H
λδ ξ
γ µ

= − + − +
+ +

                                                   (8.2) 

3 3 ( )dC HC C k t
dt H

ρ ξ
µ

= − +
+

                                        (8.3) 

Where P represents plants, H represents herbivores, C represents carnivores, 1, 2 3,k k k  are real constants 

( )1 2 3, ,ξ ξ ξ ξ=  is a 3D Gaussian White noise process satisfying  [ ] 0; 1,2,3iE iξ = =  

( ) ( )' '( ) ; 1, 2,3i j ijE t t t t i jξ ξ δ δ  = − = =  Where ijδ ,δ  are the Kronecker symbol and δ -Dirac function 

respectively. 

Let 1 2 3; ; ;P S H R C Tη η η
∗ ∗ ∗

= + = + = +  
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1 2 3; ; ;dP dH dC
dt dt dt

η η η
• • •

= = =
 

( )
2 1

2
1 1 1 1 1

1

( ) ( )
R S

S S k t
S

β η η
η α η η ξ

γ η

∗ ∗

• ∗ ∗

∗

  + +  
  = + − + − +

 + + 
 

 

( )
2 32 1 2

2 2 2 2 2

1 2

R TS R
R R k t

S R

η ηλ η η
η δ η η ξ

γ η µ η

∗ ∗∗ ∗

• ∗ ∗

∗ ∗

     + ++ +              = + − + + − +           + + + +   
   

 

( )
2 3

3 3 3 3

2

R T
T k t

R

η η
η ρ η ξ

µ η

∗ ∗

• ∗

∗

  + +      = − + +    + + 
 

 

Linear part of above equations is 

( ) ( ) ( )1 1 2 1 1t S t S k tβη η η ξ
γ

• ∗ ∗

= − − +
                                                                  (8.1.1) 

( ) ( ) ( ) ( )2 2 1 3 2 2
1t R t R u t R k tλη η η ξ

γ µ

• ∗ ∗ ∗

= − + − +
                                          (8.2.1) 

( ) ( )3 2 3 3t T k tρη η ξ
µ

• ∗

= +
                                                                                  (8.3.1) 

Taking F.T on both sides of (8.1.1),(8.2.1) and (8.3.1) ,we get 

( ) ( ) ( )1 21 1K i S S Sβξ ω ω η η ω
γ

∗ ∗ = + + 
 

 

 (8.4) 

( ) ( ) ( ) ( )2 1 32 2
1K R i R Rλξ ω η ω ω η ω η ω

γ µ

∗ ∗ ∗ = − + + + 
 

   

                           (8.5) 

( ) ( ) ( )23 3 3K T iρξ ω η ω ωη ω
µ

∗

= − +
  

                      (8.6) 

The matrix form of (8.4), (8.5) and (8.6) is ( ) ( ) ( )N ω η ω ξ ω=
 

                      (8.7) 

When    

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

( )

( )

( )

( )

( )

( )

( )

1 1
1 1 1

2 2 2 2 2

3 3 3
3 3

; ; ;

Ka b c
N a b c K

a b c K

η ω ξ ωω ω ω
ω ω ω ω η ω η ω ξ ω ξ ω

ω ω ω η ω ξ ω

   
    
    = = =    
         
   

 

   

 

 

Where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 2

2 2 3 3 3

; ; 0; ;

1; ; 0; ; .

a i S b S c a R

b i R c R a b T c i

β λω ω ω ω ω
γ γ

ρω ω ω ω ω ω ω
µ µ

∗ ∗ ∗

∗ ∗ ∗

−
= + = = =

 = + = = = − = 
 

    (8.8) 
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Eq (8.7) can also be written as  ( ) ( ) ( )1
Nη ω ω ξ ω

−
=   

 

 

Let ( ) ( )1
N Lω ω

−
=    

Therefore, ( ) ( ) ( )Lη ω ω ξ ω=
 

                                                                               (8.8.1) 

Where   ( ) ( )( )
( )

Ads N
L

N
ω

ω
ω

=                                                                                   (8.9)  

( ) ( ) ( )( )ImN R i gω ω ω= + . 

From the equation (8.8.1), we have 
3

1
( ) ( ) ( ), 1, 2,3.i ij j

j
L iη ω ω ξ ω

=
= ∑ =

 

              (8.10)  

The corresponding spectrum is 
3 2

1
( ) ( ) ; 1, 2,3

i j ij
j

S k L iη ω ω
=

= ∑ =                          (8.11) 

The intensities of fluctuations in the variables , 1, 2,3i iη = are given by 

3 2

1

12 ( ) ; 1, 2,3.
2

i

j ij
j

k L d i
η

ω ω
πσ

∞

=
−∞

= ∑ =∫           (8.12) 

By (8.9), we obtain 

( ) ( ) ( )
1

2 2 2

1 1 1
1 2 3

12
2

A B Ck d k d k d
N N Nη

ω ω ω
π ω ω ωσ

∞ ∞ ∞

−∞ −∞ −∞

  = + + 
  
∫ ∫ ∫

               

(8.13) 

( ) ( ) ( )
2

2 2 2

2 2 2
1 2 3

12
2

A B Ck d k d k d
N N Nη

ω ω ω
π ω ω ωσ

∞ ∞ ∞

−∞ −∞ −∞

  = + + 
  
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The equations (8.13),(8.14),(8.15) becomes  
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If we are interested in the dynamics of system (8.1),(8.2),(8.3) with either 1 0K =  (or)  2 0K =  (or) 3 0K = , 
Then the population variance are  
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If 2 0K = , 3 0K =  then   
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If 1 0K = , 3 0K = , then  
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Population variance cannot be easily evaluated though analytical evaluation and hence it has been numerically 
evaluated for different set of values and parameters using MATLAB. The graphical presentation has been shown in 
Figurs.9-16. 

IX. Numerical Illustrations 
In this section, the variation of P.H and C with respect to time and in between P,H,C are computed numerically 

for a wide range of values of the characterizing parameters , , , , , ,α β γ λ δ µ ρ  as shown in the following using 
MAT-LAB and the results obtained are illustrated in Figures. 

  

Fig. 1: Steady State 5E with α =0.08,          Fig. 2: Plant-Herbivores and Carnivores Stable Limit Cycle 

β = 0.0025,γ =0.985,δ = 1, 

λ = 2.6123, ρ = 2,µ = 0.41. 

 
Fig. 3: Steady State 5E with α =0.0069,         Fig. 4: Plant-Herbivores and Carnivores Stable Limit Cycle 
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β = 0.0025,γ =0.985,δ = 1, λ = 2, 

ρ = 2,µ = 0.41.  

Using Theorem 6.1 we have determined the critical value of λ  as λ
∗

=2.75. The system is found to be unstable 

forλ λ
∗

>  around the positive steady state 5E .when the value of λ is taken to be λ
∗

=2.75 the solution of the system 

(2.2) has been as shown in Fig: 6, which explains the instability of system around the positive equilibrium point 5E . 

 

Fig. 5                     Fig. 6: Bifurcation Diagram for λ = 2.9523 

  

Fig. 7    Fig. 8: Bifurcation Diagram for λ = 3.2803 
Figures 9-16, demonist rates the periodic behaviour of the growth of the population in a random surroundings 

with high and low intensities. 

 
Fig. 9      Fig. 10: Variation of P, H and C 

ISSN 1943-023X                     2533 
Received: 02 Nov 2018/Accepted: 17 Apr 2019 



Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 04-Special Issue, 2019 

Fig. 9 represents Variation of P,H,C Vs  t  for α =0.00698, β = 0.0039,γ =0.985,δ = 1, λ = 2, ρ = 2,µ = 
0.481 , 1ξ =0.9332, 2ξ = 0.6958, 3ξ = 0.8940, 1K = 0.2, 2K = 0.1, 3K = 3. 

  
Fig. 11      Fig. 12: Variation of P, H and C 

Fig.11 represents Variation of P,H,C Vs  t  for α =0.08, β = 0.0025,γ =1.985,δ = 1, λ = 0.9523, ρ = 2,µ = 
0.412 , 1ξ = 0.952, 2ξ = 0.7175, 3ξ = 0.9511, 1K = 0.3, 2K = 0.2, 3K = 3 

 
Fig. 13                           Fig. 14: Variation of  P, H and C. 

Fig.13 represents Variation of P,H,C Vs  t  for values   α =0.0069, β = 0.0025,γ =0.985,δ = 1, λ = 4, ρ = 
2,µ = 0.421, 1ξ = 0.8837, 2ξ = 0.6958, 3ξ = 0.8012, 1K = 0.2, 2K = 0.1, 3K = 3. 

 
Fig. 15: Variation of  P, H and C    Fig.16 

ISSN 1943-023X                     2534 
Received: 02 Nov 2018/Accepted: 17 Apr 2019 



Jour of Adv Research in Dynamical & Control Systems, Vol. 11, 04-Special Issue, 2019 

Fig.16 represents Variation of P,H,C Vs,  t  for α =0.0069, β = 0.0025,γ =0.985,δ = 1, λ = 4, ρ = 2,µ = 
0.421, 1ξ = 0.8837, 2ξ = 0.5978, 3ξ = 0.930, 1K = 5, 2K = 3, 3K = 2. 

X. Conclusions 
In this paper, a plant-herbivore-carnivore ecosystem has been considered. The boundedness of the solutions and 

existence of steady states is established. The local and global stability of the proposed model around its steady states 
has been analyzed. A Hopf bifurcation is studied around the positive steady state and the condition for the 
persistence is established. We have formulated the stochastic version of the model by incorporating the Gaussian 
White noise under the influence of fluctuating environment. Further we established the behavior of the system with 
effect of stochastic perturbations. In this stochastic process we observed that the sensitivity of parameters causes 
large environmental fluctuations which leads to chaotic behavior. 

Statement of conflict of interest: On behalf of all authors, the corresponding author states that there is no conflict 
of interest. 
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