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CHAPTER - 1                                                                       INTRODUCTION 

 

1.1 GENERAL INTRODUCTION 

 

Modeling of the growth is the heart of various fields of applied statistics such as 

Biometrics, Econometrics, Demo metrics, Business and Industrial Statistics, Time 

series and forecasting. Growth model methodology has been widely used in the 

modeling of various research problems in these fields. In recent years, in almost all 

applied fields of statistics, a great deal of research has been directed to either the 

mathematical or stochastic modeling of growth and establishing the functional 

relationships among different characteristics by fitting various linear or nonlinear 

growth models. 

A large number of mathematical and statistical growth models have been developed in 

the literature and successfully applied to different situations in the real world relating 

to several research problems in the various fields of applied statistics. However, still, 

there are an equally a large number of situations, which have not yet been 

mathematically or statistically modeled, because of the situations may be complex or 

models formed are mathematically or statistically intractable.  

 

1.2 CLASSIFICATION OF GROWTH MODELS       

 

The various growth models can be broadly classified into two categories namely (i) 

Discrete Growth Models and (ii) Continuous Growth Models.  

Suppose yn be the value of y after n intervals of time passed. For discrete growth 

model, one may write a difference equation as  

 1 1, , ......, n n ny f y y t
 

Mathematically, solving a difference equation means finding an explicit expression 

for yn in terms of n and initial values such as y0.  A difference growth model 
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connecting yn+1 and yn and no other y values is called first-order difference growth 

model. If the growth model also involved yn-1 or yn+2 then it will be called Second 

order difference growth model. In other words, the order is difference between the 

highest and lowest subscripts appearing in the model. For instance, the first order 

linear difference growth model may be written as 
1 ; ,n ny y       are constants. 

A simple example of a nonlinear difference growth model may be written as  

 1 1n n ny y y    

where   is constant.  

 

Linear Difference Growth models involving more than one variable can be expressed 

using vectors and matrices.  

In the case of continuous growth models, the techniques of differential calculus 

become very relevant. If f (t) is a function of time then the instantaneous rate of 

change of ‘f’ with respect to t is given by 
( )d f t

dt
. When more than one variable 

changes at the same time, one may use partial derivatives.  

Generally a continuous growth model is suitable when the time interval is small. The 

main advantage of continuous growth model is that a differential equation may be 

easier to manipulate and solve than a difference growth model. Some of the simple 

growth models are given by; 

 

(a) Discrete Growth Models  

(i)  Arithmetic Growth Model : 
1n ny y c    

The arithmetic growth model, also known as linear growth, is a simple mathematical 

representation used to describe a situation where a quantity or value increases by a 

fixed amount in each time period. It is a linear relationship where the change is 

constant over time. This is in contrast to exponential growth, where the quantity 

increases by a fixed percentage in each time period. 
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(ii) Geometric Growth Model : 
1n ny y   

The geometric growth model, also known as exponential growth, is a mathematical 

model that describes a situation in which a quantity or value increases by a fixed 

percentage or rate in each time period. It is a nonlinear relationship where the growth 

is proportional to the current value of the quantity. This is in contrast to arithmetic 

growth, where the quantity increases by a fixed amount in each time period. 

 

(iii) Linear First Order Growth Model : 
1n ny y b    

The linear first-order growth model is a mathematical representation used to describe 

a situation where a quantity or value increases or decreases linearly over time with a 

rate of change that depends on a constant proportionality factor. Unlike the arithmetic 

growth model, which has a constant fixed increment, the linear first-order growth 

model involves a rate of change that is proportional to the current value of the 

quantity. 

 

(b) Continuous Growth Models 

(i)  Linear Growth Model: y t    

The linear growth model, also known as linear growth or arithmetic growth, is a 

simple mathematical representation used to describe a situation where a quantity or 

value increases or decreases by a fixed amount in each time period. In this model, the 

change in the value of the quantity is constant over time, resulting in a straight-line 

relationship when graphed. 

The linear growth model is a straightforward way to represent and understand linear 

trends in various fields, such as economics, finance, and physics. It provides a clear 

and intuitive way to make predictions about how a quantity will change over time 

when the rate of change is constant. 
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(ii) Power Functional Growth Model : by at  

The power functional growth model, also known as a power-law model or exponential 

growth model, describes a situation where a quantity or value increases or decreases 

exponentially with time. In this model, the rate of change of the quantity is 

proportional to its current value, resulting in exponential growth or decay. 

 

(iii) Polynomial Function Growth Model: 2 3

0 1 2 3 ..............y t t t         

A polynomial growth model describes a situation where a quantity or value increases 

or decreases according to a polynomial function of time. Polynomial functions are 

mathematical expressions involving variables raised to various powers, and they can 

represent a wide range of growth patterns, including linear, quadratic, cubic, and 

higher-degree growth or decay. 

 

(iv) Exponential Growth Model:  t ty e or y    

The exponential growth model is a mathematical model that describes the process of 

growth in which a quantity increases rapidly over time. In this model, the rate of 

growth is directly proportional to the current size of the quantity. Exponential growth 

is characterized by a constant relative growth rate, which means that the quantity 

increases by a fixed percentage over a fixed time period. 

 

The exponential growth model is often used to describe phenomena such as 

population growth, the spread of diseases, compound interest in finance, and the 

growth of microorganisms under ideal conditions. It's important to note that 

exponential growth is an idealized model and may not always accurately represent 

real-world situations. In reality, factors such as resource limitations, competition, and 

external constraints can limit exponential growth and lead to more complex growth 

patterns. 
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CHAPTER - 2     MATHEMATICAL ASPECTS OF GROWTH MODELS 

 

2.1 INTRODUCTION 

2.1.1 SIMPLE SITUATIONS REQUIRING MATHEMATICAL MODELLING 

1. Mathematical modeling is a powerful tool for understanding and solving 

various real-world problems. Here are some simple situations that require 

mathematical modeling: 

2. Population Growth: Modeling the growth of a population over time using 

equations such as the logistic growth model or exponential growth model. 

3. Compound Interest: Calculating the future value of an investment based on 

interest rates, compounding frequency, and the initial principal amount. 

4. Projectile Motion: Modeling the trajectory of an object thrown or launched 

into the air, considering factors like initial velocity, angle of projection, and 

gravity. 

5. Traffic Flow: Analyzing traffic patterns on roads or highways to optimize 

traffic signals, lane configurations, and reduce congestion. 

6. Epidemiology: Modeling the spread of diseases within a population using 

epidemiological models like the SIR (Susceptible-Infectious-Recovered) 

model. 

7. Chemical Reactions: Predicting the outcome of chemical reactions by using 

chemical kinetics and reaction rate equations. 

8. Finance: Developing models for stock price predictions, portfolio optimization, 

or option pricing using mathematical finance models like the Black-Scholes 

model. 

9. Environmental Pollution: Simulating the dispersion of pollutants in air or 

water, taking into account factors like diffusion, wind speed, and chemical 

reactions. 
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10. Weather Forecasting: Building mathematical models to predict weather 

patterns and climate changes using data on temperature, pressure, humidity, 

and more. 

11. Supply Chain Management: Optimizing supply chain logistics by modeling 

factors like demand, inventory levels, production capacity, and transportation 

costs. 

12. Electrical Circuits: Analyzing and designing electrical circuits using 

Kirchhoff's laws and other mathematical tools. 

13. Structural Engineering: Determining the stress, strain, and stability of 

structures under various loads, such as bridges, buildings, and dams. 

14. Fluid Dynamics: Modeling the flow of fluids (e.g., air, water) in pipes, 

channels, or around objects to solve problems related to aerodynamics, 

hydrodynamics, or hydraulic systems. 

15. Optimization Problems: Finding the best solution to a problem with 

constraints, such as linear programming for resource allocation or the traveling 

salesman problem for route optimization. 

16. Game Theory: Analyzing strategic interactions and decision-making in 

situations involving multiple players, such as in economics, politics, or 

competition. 

17. Robotics and Motion Planning: Developing algorithms for robotic 

movements and path planning, considering obstacles and constraints. 

18. Machine Learning and Data Analysis: Using mathematical models for data 

analysis, classification, regression, and prediction in various domains. 

19. Geographic Information Systems (GIS): Modeling geographical data for 

purposes like urban planning, resource management, and environmental 

analysis. 

20. Energy Consumption: Modeling energy consumption patterns in buildings or 

industrial processes to optimize energy efficiency. 
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21. Criminal Justice: Modeling crime patterns and predicting crime hotspots to 

aid law enforcement and policy decisions. 

These are just a few examples, and mathematical modeling can be applied to a wide 

range of fields to gain insights, make predictions, and solve practical problems. It 

involves using mathematics to represent and understand real-world phenomena, often 

requiring the development of equations, simulations, or computational models. 

 

2.1.2 CLASSIFICATION OF MATHEMATICAL MODELS 

Mathematical models can be classified into various categories based on their 

characteristics and applications. Here are some common classifications of 

mathematical models: 

 

Deterministic vs. Stochastic Models: 

Deterministic Models: These models are based on precise, predictable relationships 

and do not consider random factors. They provide a single, fixed solution for a given 

set of input parameters. 

Stochastic Models: Stochastic models incorporate randomness and uncertainty into 

the modeling process. They often involve probability distributions and provide 

probabilistic 

outcomes. 

 

Continuous vs. Discrete Models: 

Continuous Models: These models describe systems that change continuously over 

time or space, often using differential equations or functions. 

Discrete Models: Discrete models represent systems with distinct, separate states or 

time steps, commonly used in fields like computer science and discrete mathematics. 

Static vs. Dynamic Models: 
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Static Models: Static models represent systems at a single point in time or without 

considering changes over time. They are used for situations where time dynamics are 

not significant. 

Dynamic Models: Dynamic models capture how systems change and evolve over 

time, making them suitable for modeling dynamic processes and systems. 

Linear vs. Nonlinear Models: 

Linear Models: Linear models assume that the relationships between variables are 

linear, adhering to the principles of superposition and proportionality. 

Nonlinear Models: Nonlinear models allow for more complex relationships between 

variables, where changes in one variable may not produce proportional changes in 

another. 

Descriptive vs. Predictive Models: 

Descriptive Models: Descriptive models aim to understand and explain observed 

phenomena. They do not necessarily make predictions but provide insights into the 

underlying processes. 

Predictive Models: Predictive models use historical data to forecast future events or 

outcomes. Machine learning algorithms, for example, are often used for predictive 

modeling. 

Physical Models vs. Empirical Models: 

Physical Models: Physical models are based on fundamental principles and laws of 

nature, such as Newton's laws of motion or the laws of thermodynamics. 

Empirical Models: Empirical models are developed based on observed data and 

statistical relationships, often without a direct connection to underlying physical 

principles. 

Deterministic Chaos Models: 

Deterministic Chaos Models: These models exhibit chaotic behavior even though 

they are entirely deterministic. They are often used to describe systems that are highly 

sensitive to 

initial conditions, such as the Lorenz system. 
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Agent-Based Models: These models simulate the interactions and behaviors of 

individual agents or entities within a system, often used in social sciences, economics, 

and ecology. 

Spatial Models: These models consider the spatial distribution of variables and are 

used in fields like geography, urban planning, and ecology to study spatial 

relationships and patterns. 

Optimization Models: These models aim to find the best solution among a set of 

feasible alternatives, often involving linear programming, integer programming, or 

nonlinear optimization. 

Network Models: Network models describe relationships and interactions between 

interconnected entities, such as in transportation networks, social networks, or 

communication networks. 

Hybrid Models: These models combine elements of multiple types of models to 

address complex, multidimensional problems. For example, a model might integrate 

deterministic and stochastic components. 

The choice of model type depends on the specific problem, the available data, and the 

level of detail and accuracy required for the analysis or simulation. Researchers and 

practitioners select the appropriate model category based on the characteristics of the 

system being studied or modeled. 

 

2.1.3 SOME CHARACTERISTICS OF MATHEMATICAL MODELS 

Mathematical models are abstract representations of real-world phenomena, systems, 

or processes using mathematical language and principles. These models are used in 

various fields, including science, engineering, economics, and social sciences, to 

understand, predict, and analyze complex systems. Here are some key characteristics 

of mathematical models: 

Abstraction: Mathematical models simplify real-world complexities by focusing on 

essential elements while disregarding less important details. This abstraction is 

necessary to make complex systems manageable and analyzable. 
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Mathematical Formulation: Models are expressed using mathematical equations, 

functions, and symbols to represent relationships and interactions within the system 

being studied. These equations can be differential equations, algebraic equations, or 

other mathematical expressions. 

Assumptions: Models are based on assumptions about the behavior and 

characteristics of the 

system. Assumptions may include simplifications, idealizations, or constraints that 

make the model tractable. Understanding the assumptions is crucial for interpreting 

model results. 

Variables: Models include variables that represent the quantities or parameters of 

interest. These variables can be dependent (affected by other variables) or 

independent (driving the system's behavior). 

Parameters: Models often include parameters, which are constants that characterize 

the system. Parameters can be estimated from data or based on expert knowledge. 

Time Dependency: Many models are time-dependent, meaning they describe how 

the system changes over time. Time can be discrete (e.g., in discrete-event simulation) 

or continuous (e.g., in differential equations). 

Predictive Capability: Mathematical models are used to make predictions about the 

behavior of the system under different conditions or scenarios. They can answer 

"what if" questions and help plan for various outcomes. 

Validation and Verification: Models should be validated and verified to ensure that 

they accurately represent the real-world system. Validation involves comparing model 

predictions to observed data, while verification ensures the model's mathematical 

correctness. 

Generalizability: A good mathematical model can be applied to a range of similar 

systems or situations. It should possess a degree of generality and be adaptable to 

different contexts. 
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Sensitivity Analysis: Sensitivity analysis assesses how changes in model inputs or 

parameters affect model outcomes. This analysis helps identify critical factors and 

uncertainties in the model. 

Simulation: Some mathematical models are implemented as simulations, allowing 

researchers to study the behavior of the system through computational experiments. 

Simulations can provide insights into complex dynamic systems. 

Interpretability: Models should be interpretable, meaning that their mathematical 

structure and parameters have meaningful connections to the real-world system. 

Interpretability aids in understanding the implications of model results. 

Limitations: Models have limitations and may not fully capture all aspects of the 

real-world system. Recognizing and acknowledging these limitations is essential for 

responsible use of models. 

Trade-offs: Models often involve trade-offs between complexity and simplicity. 

More 

complex models may provide better representation but may be computationally 

intensive, while simpler models may lack accuracy. 

Ethical Considerations: Mathematical models should be developed and used 

ethically, particularly when they have implications for human welfare, policy, or 

decision-making. 

Iterative Process: Developing and refining mathematical models is often an iterative 

process. Models are continually improved as new data becomes available and as our 

understanding of the system deepens. 

Communication: Models are a means of communicating insights and predictions to a 

broader audience, including policymakers, stakeholders, and the general public. 

Mathematical models are valuable tools for understanding and solving complex 

problems, but their effectiveness depends on the quality of their formulation, 

assumptions, and validation processes. Properly designed and used, mathematical 

models can provide valuable insights and support informed decision-making. 
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1. Estimation of Parameters: Every model contains some parameters and these have 

to be estimated. The models must itself suggest, experiments or observations and the 

method of calculation of these parameters. Without this explicit specification, the 

model is incomplete. 

2. Modelling: Mathematics + Discipline: For making a mathematical models of a 

situation, one must know both mathematics and the disciple in which the situation 

arises. Efforts to make a mathematical model without deeply understanding the 

discipline concerned may lead to infrutous models. Discipline insight must both 

precede and flow mathematical modelling. 

3. Mathematical modelling and mathematical techniques: Emphasis in applied 

mathematics has very often been on mathematical techniques, but the heart of applied 

mathematics is mathematical modelling. 

4. Criteria for successful models: These include good agreement between 

predictions and observations, of drawing further valid conclusions, simplicity of the 

model and its precision. 

5. Constraints of additively and normality:  Models which are linear, additive and in 

which the probability distribution follows the normal law one relatively simpler, but 

relatively more  realistic models have to be free from these constraints. 

6. Validation by independent data: Sometimes parameters are estimated with the 

help of same data and the same data are used to validate the model. This is 

illegitimate. Independent data should be used to validate the model. 

7. Modelling in terms of modules: One may think of models for small modules and 

by combining them in different ways, one may get models for a large number of 

systems. 

8. Complexity of models: This can be increased by subdividing variables, by taking 

more variables and by considering more details. Increase of complexity need not 

always lead to increase of insight as after a stage, diminishing returns begin to set in. 

the one of mathematical modelling consists in stopping before this stage. 
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9. Robustness of models: Mathematical model is said to be robust if small changes 

in the parameters lead to small changes in the behaviour of the model. The decision is 

made by using sensitivity analysis for the models. 

10. Relative precision of models: Different models differ in their precision and their 

agreement with observations. 

11. Hierarchy of models: Mathematical modelling is not a one shot affair. Models are 

constantly improved to make them more realistic. Thus for every situation, we get a 

hierarchy of models, each more realistic than the preceding and each likely to be 

followed by a better one. 

 

2.1.4 MATHEMATICAL MODELLING THROUGH GEOMETRY 

Mathematical modeling through geometry involves using geometric principles, 

shapes, and transformations to describe and analyze real-world phenomena or solve 

practical problems. Geometry provides a powerful framework for modeling a wide 

range of situations, from simple spatial relationships to complex structures. Here are 

some examples of mathematical modeling through geometry: 

Architectural Design: Architects use geometric modeling to design buildings, 

bridges, and other structures. They use concepts like symmetry, proportion, and 

geometric transformations to create aesthetically pleasing and functional designs. 

City Planning: Urban planners use geometric models to lay out city streets, parks, 

and infrastructure. Concepts such as grid patterns, road intersections, and zoning 

regulations are based on geometric principles. 

Robotics and Motion Planning: In robotics, geometric modeling is used to plan the 

movement and navigation of robots. Concepts like kinematics, inverse kinematics, 

and collision detection rely heavily on geometric computations. 

Computer Graphics: Computer graphics and animation rely on geometric modeling 

to create and manipulate 2D and 3D objects. Geometric transformations, such as 

translation, rotation, and scaling, are fundamental operations in computer graphics. 
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Molecular Modeling: In chemistry and biology, geometric modeling is used to study 

the three-dimensional structures of molecules, proteins, and DNA. This helps in 

understanding chemical reactions and biological processes. 

Cartography and Geographic Information Systems (GIS): Cartographers use 

geometric modeling to create maps that accurately represent geographical features and 

relationships. GIS technology relies on geometric data to analyze and visualize spatial 

information. 

Mechanical Engineering: Engineers use geometric modeling to design and analyze 

mechanical parts and systems. Concepts like solid modeling, finite element analysis, 

and tolerance analysis are essential for product design and manufacturing. 

Art and Sculpture: Artists often use geometric principles to create visually appealing 

and balanced compositions. Geometric shapes, such as circles, triangles, and 

rectangles, are used as the basis for many artworks. 

Crystallography: Scientists use geometric models to understand the atomic 

arrangement in crystals. X-ray diffraction and geometric principles are employed to 

determine crystal structures. 

Optics and Lens Design: Optical engineers use geometric modeling to design lenses 

and optical systems. Concepts like ray tracing and Snell's law are used to predict how 

light behaves in various optical setups. 

3D Printing and Additive Manufacturing: Geometric modeling is essential in 3D 

printing and additive manufacturing processes, where digital models are converted 

into physical objects layer by layer. 

Pattern Recognition: Geometric modeling is used in pattern recognition tasks, such 

as identifying shapes, objects, or patterns in images and data. 

Astronomy and Celestial Mechanics: Astronomers use geometry to model the 

positions and movements of celestial bodies. Concepts like ellipses, orbits, and 

angular measurements are employed. 

Navigation and GPS: Geometric principles are used in global positioning systems 

(GPS) to calculate the position of a receiver based on signals from multiple satellites. 
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Environmental Modeling: Geometric modeling is used to analyze and visualize 

environmental data, such as terrain elevation, land use, and the flow of water in 

watersheds. 

In these and many other fields, geometric modeling serves as a valuable tool for 

representing, analyzing, and solving real-world problems. It helps researchers and 

professionals gain insights into the spatial and structural aspects of systems and 

phenomena. 

 

2.1.5 MATHEMATICAL MODELLING THROUGH ALGEBRA 

 

Mathematical modeling through algebra involves using algebraic equations and 

expressions to describe and analyze real-world situations, relationships, and problems. 

Algebra provides a versatile and powerful tool for modeling a wide range of 

phenomena. Here are some examples of mathematical modeling through algebra: 

Population Growth: The logistic growth model and exponential growth model are 

classic algebraic models used to describe how populations of organisms grow over 

time. These models incorporate variables such as population size, growth rate, and 

carrying capacity. 

Finance and Investment: Algebraic models are commonly used in finance to model 

various aspects of investments. For example, the compound interest formula is an 

algebraic model used to calculate the future value of an investment based on the 

principal amount, interest rate, and time. 

Physics and Engineering: Algebraic equations describe the relationships between 

physical quantities in various engineering and physics applications. For example, F = 

ma (Newton's second law) relates force (F), mass (m), and acceleration (a) through an 

algebraic equation. 

Chemical Reactions: Chemical reactions are often represented using algebraic 

equations, such as stoichiometric equations, which show the proportions of reactants 

and products in a chemical reaction. 
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Economics: Algebraic models are used in economics to represent supply and demand 

relationships, production functions, and cost functions. Linear and nonlinear equations 

are common tools for modeling economic systems. 

Electrical Circuits: Algebraic equations are used to analyze and design electrical 

circuits, such as Ohm's law (V = IR) for relating voltage (V), current (I), and 

resistance (R) in a circuit. 

Statistics and Data Analysis: Algebraic models are employed in statistical analysis 

and regression analysis to describe relationships between variables and make 

predictions based on data. 

Optimization Problems: Linear programming and quadratic programming involve 

algebraic modeling to optimize objective functions subject to constraints. These 

models are used in operations research and resource allocation. 

Actuarial Science: In the insurance industry, algebraic models are used to calculate 

premiums, reserves, and probabilities of events, such as the probability of an 

insurance claim occurring. 

Game Theory: Algebraic models are used to represent and analyze strategic 

interactions among players in various games. Payoff matrices and Nash equilibrium 

equations are examples of algebraic tools used in game theory. 

Environmental Modeling: Algebraic models are employed to describe and predict 

environmental phenomena, such as pollution dispersion, species interactions, and 

ecosystem dynamics. 

Epidemiology: Algebraic models, such as the basic reproduction number (R₀) in 

epidemiology, are used to understand the spread of diseases within populations. 

Cryptocurrency and Blockchain: Algebraic models are used in cryptography and 

blockchain technology to describe algorithms and security protocols. 

Network Analysis: Algebraic models represent relationships and connections in 

network analysis, including social networks, communication networks, and 

transportation networks. 
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Control Systems: Algebraic equations are used in control systems engineering to 

model and analyze the behavior of dynamic systems, such as those in robotics and 

industrial automation. 

Algebraic models are valuable because they allow for the representation of 

relationships and behaviors of systems using equations that can be manipulated and 

solved analytically or computationally. They are essential tools in science, 

engineering, economics, and many other fields for understanding, predicting, and 

optimizing real-world phenomena. 

This model was used about two thousand years ago. A and B are two points on the 

surface of the Earth with the same longitude and d miles apart. When the sun is 

vertically above A (i.e. it is a direction OA, where O is the centre of the earth) the 

Sun’s rays make an angle of 0  with the vertical at B (i.e. with the line OB). If a miles 

is the radius of the earth,  

           
2 360

d

a




       (or)  

360

2
a


        (2.1.1) 

 

2.1.6 MATHEMATICAL MODELLING THROUGH TRIGONOMETRY 

Mathematical modeling through trigonometry involves using trigonometric functions 

and relationships to describe and analyze real-world phenomena and problems that 

involve angles, periodic behavior, and wave-like patterns. Trigonometry plays a 

crucial role in various fields where angular and cyclical aspects are significant. Here 

are some examples of mathematical modeling through trigonometry: 

Wave Phenomena: Trigonometric functions like sine and cosine are used to model 

wave behavior in physics, such as the oscillation of a pendulum, the vibrations of a 

guitar string, or electromagnetic waves. 
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Mechanical Vibrations: Trigonometric functions are used to model the vibrations 

and oscillations of mechanical systems, including springs, pendulums, and mass-

spring-damper systems. 

Electrical Circuits: In alternating current (AC) circuits, trigonometric functions 

describe voltage and current waveforms. Phasor analysis uses trigonometry to 

represent complex AC quantities. 

Sound Waves: Trigonometry is used to model sound waves, including their 

frequency, amplitude, and the Doppler effect, which describes the change in 

frequency of a sound source in motion. 

Navigation and GPS: Trigonometric functions like the law of sines and law of 

cosines are used in navigation to calculate distances, angles, and positions on the 

Earth's surface. 

Astronomy: Trigonometry is essential in astronomy for measuring distances between 

celestial objects, calculating their positions, and understanding the geometry of the 

night sky. 

Mechanical Engineering: Trigonometry is used to analyze and design mechanical 

systems involving angles and rotational motion, such as gears, linkages, and cam 

mechanisms. 

Optics and Light: Trigonometry is employed in optics to describe the behavior of 

light waves, including reflection, refraction, and the geometry of lenses and mirrors. 

Periodic Phenomena: Trigonometric functions model periodic behavior in various 

fields, including the motion of planets, tides, and cyclical economic trends. 

Seismic Waves: Trigonometry is used to analyze seismic waves generated by 

earthquakes, helping to determine their direction, magnitude, and epicenter. 

Music and Sound Engineering: Trigonometry is used to analyze and synthesize 

musical tones, including frequency, amplitude, and harmonics. 

Mechanical Waves: Trigonometric functions describe the propagation of mechanical 

waves, such as water waves, sound waves, and seismic waves. 
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Robotics and Kinematics: Trigonometry is used to model the movement and 

positions of robotic arms and other mechanical systems with rotating joints. 

Geometry and Geodesy: Trigonometry plays a fundamental role in geometry, 

including calculating the measurements of angles, distances, and areas. It is also used 

in geodesy to measure the shape and size of the Earth. 

Artificial Intelligence and Signal Processing: Trigonometric functions are used in 

Fourier analysis to analyze and process signals and data, including image and speech 

recognition. 

Control Systems: Trigonometry is applied to model and analyze the behavior of 

dynamic systems in control engineering, such as systems with oscillatory responses. 

Trigonometry provides a powerful set of tools for modeling and understanding 

cyclical and angular phenomena in various fields of science, engineering, and 

mathematics. It helps researchers and professionals describe and analyze complex 

systems with periodic or wave-like behavior. 

From two points A, B the surface of the earth will be same longitude, one in the 

Northern hemisphere and the other in the Southern hemisphere, measure angles 1 , 2  

between verticals at A and B directions of the centre of the moon. 

If d is the distance of the centre of the moon’s disc from the centre of Earth, 

 

1 1 1sin sin( )

d a

  



 ,           

2 2 2sin sin( )

d a

  



              (2.1.2) 

Also 

1 2 1 2                (2.1.3) 

 

where 1  is the northern latitude of A and  2  is the southern latitude of B. 

Since 1 , 2  are know, 1 2   is known. Eliminating 1 , 2  from (2.`1.2) and (2.1.3), 

we get d in terms of a, 1 , 2  which are all known. 
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2.1.7 MATHEMATICAL MODELLING THROUGH CALCULUS 

 

Mathematical modeling through calculus involves using the principles of calculus, 

including differentiation and integration, to describe and analyze real-world 

phenomena, systems, and problems. Calculus provides powerful tools for 

understanding how quantities change with respect to one another, making it a valuable 

tool in many scientific and engineering applications. Here are some examples of 

mathematical modeling through calculus: 

Motion and Dynamics: Calculus is used to model the motion of objects by 

describing their position, velocity, and acceleration as functions of time. This is 

essential in physics and engineering for understanding how objects move under 

various forces. 

Rate of Change: Calculus is employed to model and analyze the rate at which 

quantities change. This is valuable in fields like economics to study production and 

consumption rates, or in biology to understand population growth rates. 

Optimization Problems: Calculus is used to solve optimization problems where the 

goal is to find the maximum or minimum of a certain function, subject to constraints. 

Examples include finding the optimal design of structures or maximizing profits in 

business. 

Population Dynamics: Calculus models population growth and decay, considering 

birth rates, death rates, immigration, and emigration. These models are used in 

demography, ecology, and epidemiology. 

Chemical Kinetics: Calculus is used to describe the rates of chemical reactions, 

helping chemists understand how reactants transform into products over time. 

Thermodynamics: Calculus is used to describe the behavior of thermodynamic 

systems, including processes such as heating, cooling, and phase transitions. 

Economics: Calculus is used to model economic relationships, such as supply and 

demand curves, cost functions, and utility functions. It helps economists analyze 

market behavior and policy impacts. 
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Electricity and Magnetism: Calculus is essential in the study of electromagnetic 

fields and circuits, where it is used to describe electric and magnetic forces, voltage, 

current, and electromagnetic waves. 

Fluid Mechanics: Calculus is employed to analyze the flow of fluids (liquids and 

gases) in pipes, channels, and around objects. It helps in understanding fluid dynamics 

and pressure distribution. 

Probability and Statistics: Calculus is used in probability theory and statistics to 

calculate probabilities, find expected values, and derive statistical distributions. 

Control Theory: Calculus plays a key role in control systems engineering, where it is 

used to model and analyze the behavior of dynamic systems and design controllers to 

achieve desired performance. 

Environmental Modeling: Calculus is used to model environmental processes such 

as pollutant dispersion, groundwater flow, and ecosystem dynamics. 

Finance and Portfolio Optimization: Calculus is employed in financial modeling to 

determine optimal investment strategies, risk assessment, and option pricing. 

Machine Learning and Data Analysis: Calculus is foundational for many machine 

learning algorithms, including gradient descent used in training neural networks. 

Medical Sciences: Calculus is used in medical imaging, pharmacokinetics (drug 

absorption and distribution), and modeling disease spread in epidemiology. 

Astrophysics and Cosmology: Calculus helps model celestial phenomena, such as 

the motion of planets, the expansion of the universe, and the behavior of black holes. 

Geophysics: Calculus is used to model seismic waves, study the Earth's interior, and 

analyze geological processes. 

In each of these applications, calculus is a critical tool for developing mathematical 

models that describe the behavior of systems, analyze data, and make predictions. It 

provides the mathematical framework for understanding how variables change 

continuously and helps researchers and professionals solve complex problems in 

various fields. 
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Consider the problem of refraction of light from a point A in vacuum to a point B in a 

medium of refractive index µ. If light travels with velocity V in vacuum it travels with 

velocity V/µ in the second medium so that the time T of travel is given by 

 

2 2 2 2( )a x b c x
T

V V


  
         (2.1.4) 

 

So that  

2 2 2 2( )

dT x c x
V

dx a x b c x



 

  
     (2.1.5) 

 

2 2 2

3 32
2 2 2 22 2( ) ( ( ) )

d T a b
V

dx a x b c x


 

  
    (2.1.6) 

 

Thus T is minimum when  

 

2 2 2 2
sin sin

( )

x c x
or

a x b c x
   


 

  
               (2.1.7) 

 

 

 

2.1.8 LIMITATIONS OF MATHEMATICAL MODELLING 

 

Mathematical modeling is a valuable tool for understanding and solving real-world 

problems, but it also has limitations. Here are some of the key limitations of 

mathematical modeling: 

Simplification of Reality: Mathematical models are abstractions of real-world 

systems, and they often simplify complex phenomena to make them tractable. These 
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simplifications may neglect important factors or interactions, leading to inaccuracies 

in predictions. 

Assumptions: Models rely on assumptions about the behavior of the system being 

studied. If these assumptions are incorrect or oversimplified, the model's predictions 

may not be valid. 

Data Availability and Quality: Models require data for parameter estimation and 

validation. If data is limited, incomplete, or inaccurate, it can lead to unreliable model 

outcomes. 

Parameter Estimation: Many models involve parameters that need to be estimated 

from data. The accuracy of these parameter estimates can affect the model's 

performance, and inaccuracies can lead to incorrect results. 

Complexity: Complex systems may require highly intricate and computationally 

intensive models, making them difficult to solve or simulate. This complexity can 

limit the practicality of modeling. 

Nonlinearity: Real-world systems often exhibit nonlinear behavior, which can be 

challenging to model accurately. Linear approximations may not capture important 

dynamics. 

Uncertainty: Models typically cannot account for all sources of uncertainty. 

Stochastic models attempt to address some of this uncertainty but may not fully 

capture the probabilistic nature of some phenomena. 

Validation and Verification: It can be challenging to validate and verify models 

against real-world data, especially for systems with limited observational data or for 

predicting future events. 

Human Factors: Models may not account for human behavior or decision-making 

accurately, especially in social sciences and economics, where human actions can be 

unpredictable. 

Ethical Considerations: Models can be used for purposes that raise ethical concerns, 

such as profiling individuals or making decisions that impact people's lives. 
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Inherent Error: Models are approximations of reality and may contain inherent 

errors or inaccuracies due to simplifications and limitations in mathematical 

techniques. 

Computational Resources: Some models, especially those involving high-

dimensional systems or complex simulations, may require significant computational 

resources and time, limiting their practicality. 

Domain Expertise: Developing and interpreting mathematical models often requires 

expertise in both mathematics and the specific domain being modeled. 

Misunderstandings or oversights can lead to incorrect conclusions. 

Model Overfitting: In machine learning and statistics, overfitting can occur when a 

model is too complex and fits the training data too closely, leading to poor 

generalization to new data. 

External Factors: Models may not account for external factors that can influence the 

system being studied, such as economic, political, or environmental changes. 

Despite these limitations, mathematical modeling remains a valuable tool for gaining 

insights, making predictions, and solving problems in various fields. Recognizing 

these limitations and conducting sensitivity analyses can help improve the accuracy 

and reliability of mathematical models. It's also important to use modeling as a 

complement to empirical data and expert judgment, rather than as a sole source of 

decision-making.  

 

2.7 MATHEMATICAL MODELLING SKILLS  

 

Developing mathematical modeling skills is essential for effectively using 

mathematics to represent and analyze real-world phenomena. Whether you're a 

student, researcher, or professional in a field that involves mathematical modeling, 

here are some key skills and steps to develop and improve your modeling abilities: 
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Mathematical Knowledge: Build a strong foundation in mathematics, including 

calculus, linear algebra, differential equations, and probability/statistics. These are 

fundamental tools for creating and solving mathematical models. 

Domain Knowledge: Understand the specific field or problem you're modeling. 

Domain knowledge is crucial for making informed assumptions, selecting relevant 

variables, and interpreting model results accurately. 

Problem Formulation: Clearly define the problem you want to address with a 

mathematical model. Identify the key variables, parameters, and relationships that 

play a role in the system you're modeling. 

Assumptions: Be explicit about the assumptions you're making when creating a 

model. Assumptions help simplify complex systems but should be realistic and 

justifiable. 

Model Selection: Choose an appropriate modeling approach based on the nature of 

the problem. Decide whether a deterministic, stochastic, discrete, or continuous model 

is more suitable. 

Equations and Formulation: Develop mathematical equations that describe how the 

variables in your model interact over time. These equations are often in the form of 

differential equations, difference equations, or algebraic equations. 

Parameter Estimation: If your model involves parameters (constants), estimate or 

calibrate them using available data. Parameter estimation methods may include least 

squares fitting or maximum likelihood estimation. 

Numerical Methods: Learn and apply numerical methods to solve mathematical 

models when analytical solutions are not possible. This includes techniques like finite 

difference methods, finite element methods, and numerical integration. 

Simulation: Implement simulations of your model using software tools like 

MATLAB, Python, or specialized modeling software. Simulations allow you to 

explore how the system behaves under different conditions. 
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Validation and Verification: Validate your model by comparing its predictions with 

observed data. Ensure that the model's behavior aligns with real-world outcomes and 

that it is free from errors (verification). 

Sensitivity Analysis: Conduct sensitivity analyses to assess how changes in model 

parameters or initial conditions affect the model's predictions. Identify which factors 

have the most significant impact on the results. 

Model Complexity: Choose an appropriate level of model complexity. Avoid 

overcomplicating models if simpler ones can adequately represent the system. 

Visualization: Use graphs, plots, and visualization techniques to help understand and 

communicate the results of your model. Visualization can make complex concepts 

more accessible. 

Interpretation: Interpret the results of your model in the context of the problem. 

Explain the practical implications of your findings and whether they align with 

expectations. 

Communication Skills: Develop effective communication skills to convey your 

modeling results to others, whether through written reports, presentations, or 

discussions with colleagues and stakeholders. 

Continuous Learning: Stay up-to-date with advances in modeling techniques and 

software tools. Attend workshops, conferences, and online courses to expand your 

modeling knowledge. 

Collaboration: Collaborate with experts in related fields who can provide valuable 

insights, data, or alternative perspectives on your modeling projects. 

Peer Review: Seek feedback and peer review from colleagues or mentors to improve 

the quality and rigor of your modeling work. 

Ethical Considerations: Consider the ethical implications of your modeling work, 

especially when it has real-world consequences. Ensure that your modeling is 

conducted with integrity and transparency. 
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Persistence and Patience: Mathematical modeling can be challenging, and results 

may not always align with expectations. Maintain persistence and patience in refining 

and improving your models. 

Remember that mathematical modeling is both an art and a science. It requires 

creativity, critical thinking, and problem-solving skills to build and refine models that 

accurately represent complex real-world systems. Practice and experience are key to 

becoming proficient in mathematical modeling. 

 

2.7.2 SETTING UP MODELS 

The purpose of modelling is to solve real practical problems, and this means that we 

must understand from the outset exactly what problem we are trying to solve. 

Successful mathematical modelling depends on getting things right from the start, 

and,  as in most other scientific endeavours, we are more likely to succeed if we adopt 

a methodical approach. In most cases it is found useful to complete the following 

steps. 

1. Clarify the problem. 

2. List the factors. 

3. List the assumptions. 

4. Formulate a precise problem statement. 

Clarifying the Problem 

Essentially, a problem will be proposed, often by a non-mathematician, or indeed a 

non-scientist and a particular answer requested from the model outcome,the answer 

often to  interpreted in non-mathematical terms. 

A specific objective can then be identified. As mathematical modelers we must resist 

getting stuck into the mathematical formulation before this step has been achieved. 

Misunderstandings will be very costly if there is a failure to carry out a preliminary 

investigation first and the wrong problem is modelled and ‘solved’. 
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Establishing the true nature of the problem involves asking a number of questions. No 

matter how simple the situation appears, it will be worthwhile to  ask questions for the 

problem provider to establish what is needed from the subsequent model: 

 Who is intending to use the model-how much sophistication and complexity are 

       needed? 

 Is there an underlying physical/scientific behavior to be taken into account? 

 Is there data available or does it have to be collected or looked up? 

 What underlying assumptions and simplifications about the problem can  

      reasonably be made? 

 When is the model ‘solution’ is required - what time limits have been set? 

 In what form is a solution wanted-written report, short oral presentation? 

 Are there conflicting outcomes at stake, perhaps concerning the cost of  

     implementing two different courses of action. 

This last remark is quite important, as the essence of mathematical modelling in the 

real world is often help answer conflicts between opposite viewpoints. For example, 

in the Post Office, when a large queue of customers forms and the cry goes up ‘why 

don’t they open more service counters?’ , there is a conflict between the Post Office 

manager, who can’t afford to employ an abundance of staff due to wage budget limits, 

and the customer, who reasonably wants a fast service and will go elsewhere if 

patience is tried too far. 

 

As mathematical modellers we must be clear what we can achieve before we launch 

into the above questions. What do we need to establish, before starting on a model?  

We must appreciate both the scope and the limitations of modelling and that we may 

have some powerful computing tools at our disposal with which a mathematical 

solution can be found. What must be established in discussion with the problem 

provider is exactly what we can deliver. This will involve pinning down specific 
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objectives and removing vague or irrelevant features from the context, at least until a 

first model has been completed and explained to the provider. 

 

Our wider objectives are to produce a model, probably using algebra and other 

mathematical tools, which is sufficiently general that if can be reused for other similar 

situations. Do not forget, however, that problem providers are usually less interested 

in general mathematical models than in particular answers to their problem, and the 

capability of the model in dealing with questions of the ‘what if’  type. 

 

Listing the Factors  

Every problem involves a number of different ‘factors’ which may have a bearing on 

the solution. At the early stage of model-building we need a list of these factors. In 

mathematical modelling we tend to concentrate mainly on quantifiable factors, i.e. 

those which can be given numerical values (in terms of suitable units). Quantifiable 

factors can normally be classified as variables, parameters or constants, and each of 

these can be continuous, discrete or random. Brief explanations of these categories are 

as follows: 

 

Continuous:  takes all real values over an interval, e.g. time velocity, length, cost, 

area, etc. 

Discrete:  takes on certain isolated values only. Very often these will be whole 

numbers, e.g. the number of people, tickets, matches played etc.,  in which case. 

There are no units of measurement. 

Random:  unpredictable in advance, but governed by some underlying statistical 

model. For example, buses timed to arrive theoretically every 5 min but with actual 

random inter arrival times with a mean of 5 min. The model can either be based on 

data or assumed to be a particular theoretical form. 
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Constants:  Quantities whose values we can’t change. These can be mathematical 

constants such, as ∏, or physical constants, such as acceleration due to gravity or the 

speed of light. 

 

Parameters:  Quantities which are constant for a particular application of a model, but 

can have different values for another application of the same model. For example, 

fixed costs in a simple business model, the dimension of a room, price of a ticket, 

density of fluid, mean inter arrival time of a bus service. 

 

Input variables: Quantities which determine subsequent evolutions within the model, 

such as rainfall rate into a collecting butt,  the number of people attending to disco, 

the number of months elapsed before you sell your can etc. Note that an input variable 

is expected to be known, or given or assumed, or can be considered to have any 

arbitrary value. 

 

Output variables: quantities which are consequences of given values of input 

variables and parameters and cannot be given arbitrary values. These represent the 

outcome from a model, such as the profit made on a business deal, the level in a result 

of user demand and evaporation, the time taken for a certain number of people to 

evacuate a room. 

 

In order to make the mathematical work easier, all the factors need to have suitable 

algebraic symbols assigned to them and some which represent measurement will need 

units.  

 

Listing Assumptions 

While the factors provide the building blocks of the model, it is the assumptions 

which provide the glue with which to combine the factors together into a working 

model. How easy or difficult the model is to use and how successful it turns out to be 
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depend very largely on what assumption we make. The most common and important 

types of assumptions that have to be made are: 

(a) Assumption about whether or not to include certain factor. 

(b) Assumption about the relative magnitudes of the effect of various factors. 

(c) Assumption about the form of relationship between factors 

Generally speaking, and especially when developing a new model for the first time, 

we try to choose assumptions which keep the model as simple as possible. 

Assumptions of type (a) and (b) help to keep the list of factors from being longer than 

strictly necessary. Assumptions of type (c) could be said to represent the heart of the 

model. 

 

Problem Statement 

We will have already discussed our problem under the heading ‘clarifying the 

problem’ above. In most problems we can identify the following ingredients: 

(a) Something is known or given 

(b) Something is to found, estimated or decided 

(c) There is some condition to be satisfied or objective to achieve. 

 As a result of our considerations we should now be able to crystallise our 

thoughts into a precise problem statement, expressed in terms of the factors that we 

have listed under the heading ‘listing the factors’. This statement will have the general 

form: 

Given {inputs, parameters, constants} find {outputs}. Such that {condition is satisfied 

or objective achieved} 

This may look like an over-simplification, but in fact the vast majority of problems 

can be condensed into this precise form and it helps enormously in creating a model 

approximate to the problem. Note that the same problem can have different problem 

statements, depending on what we consider to be given and what we want the model 

to find. 
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2.7.3 DEVELOPING MODELS 

Verbal statements are sometimes value and there may be a selection of possible 

equivalent mathematical statements. For example, the verbal statement as ‘x goes up y 

goes up’ can be modelled mathematically in many ways. The simplest model is 

obtained by assuming that y is directly proportional to x. The equivalent mathematical 

statement is then y x , or as an equation, kxy   where k is the constant of 

proportionality. By choosing this particular mathematical statement we are making a 

very clear assumption, which may well be criticized. A graph of y against x showing a 

straight line through the origin would be the ultimate justification.  

 

The next simplest model is the linear form xy a b   in which we are saying that y 

increases by ‘a’ units for every unit increase in x and that y=b when x=0. This also 

includes the case where ‘y decreases as x increases’. In that case the parameter ‘a’ is 

negative (the gradient of the straight line graph) anther simple way of modelling the 

statement ‘y decreases as x increases’ is by inverse proportion is 1/y x  or y /k x this 

means y decreases more steeply with x than is the case in the linear model. One way 

of testing the validity of this assumption would be to check whether ‘xy’ remains 

nearly constant. Another way is to see if the plot of lny aginst lnx is straight line of -1. 

 

More general models can be created using the form y=kxa, which gives convex curves 

for values of the parameter a>1 and concave curve for a<1. In biology, the 

relationship between the sizes of various parts of an organism can often be 

represented by such non-linear models. When there are several variable and y is 

assumed to be proportional to each of them is yαx1 and yαx2 and yαx3 for example, 

then the combine into the single model 1 2 3y kx x x . 

As part of the modelling process we need to  

 Represent variables by mathematical symbols 

 Make assumptions about now the variables are related 
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 Translate the assumptions into mathematical equation or inequalities. 

  

When choosing symbols we usually use single letters and, as often as possible, the 

first letter of the name of the variable, such as t for time. It is also traditional to use 

Greek letters such as α,β,θ and Φ for angles. 

 

When making assumptions, we choose the simplest versions which seem likely to 

reflect the behavior of the real variables. If we later realize that we have made an 

oversimplification, then a revised model will be necessary. 

When making the translation the following simple forms may be useful to remember. 

More comlex forms can be often be broken down into combinations of these. 

Verbal statement   mathematical equivalent 

Sum/total   + 

Difference between/change in    - 

Less than    < 

Greater than   > 

At least    ≥ 

Not more than    ≤ 

Ratio   / 

Y proportional to x    y=kx 

Y inversely proportional to x    y=k/x 

Y is x% of z   
100

x
y z

 
  
 

 

Y is x% more than Z                                             
1

100

x
y z

 
  
 

                       

Rate of change of y with time t    
dy

dt
 

 Note that some case is needed with the words ‘difference’ and ‘ratio’. The 

difference between A and B means A-B or it may mean the size of the difference 



 

Statistical Growth Models 

@Sahasra Publications                                                                                                                       34 

 

between then  is A-B where A>B, but B-A when A<B. these two can be combined in 

the single expression |A-B|. Similarly the “ratio of A to B” could  be  interpreted  as 

A/B or B/A. 

 

2.7.4 CHECKING MODELS 

 

Here we discuss simple checks that can be made during the process of building the 

model. These checks help to determine whether the model is sensible, appropriate and 

adequate, without being unnecessarily complicated. Then will also be more checking 

to do at a last stage in the modelling process, in the validating and likely revising of 

the model. 

 

Consistency 

We can check whether a model is consistent with the assumptions and also whether it 

is logically (containing no contradictions) and dimensionally consistent. Consistency 

with the assumption is mainly a question of how the variables have behaved when one 

of them is changed. Logical consistency is usually fairly easy to check. Dimensional 

consistency involves checking that all physical quantities can be expressed in terms of 

the three fundamental dimensions mass(M), length(L) and Time(T). 

 

Behavior 

We need to examine in model’s predictions’ (a) qualitatively and (b) quantitatively. 

The qualitative examination usually involves investigating   how the model predicts 

that one variable will change as a result of changes in other variables must of this can 

be carried out by remembering simple facts such as  ‘x’ increases 
1

x
 decreases. And 

‘exponentials increases or decreases faster than polynomials. A fraction like 
a

b
 

increases when ‘a’ increases and decreases when b increases (assuming both a and b 
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are positive). it sometimes helps to do some algebraic simplification first. For 

example if a,b and c are positive parameters what happens to the expression 

ax
F

bx c



 as x increases ? On dividing thoroughly by x we can rewrite F as 

a

c
b

x

 
 
 
 
 

 . 

now x increases 
c

x
 decreases, so the denominator decreases and F itself increases.  

 

Other general questions to ask about a model are what happens at extreme values of 

the variable (is very small or very large values) are there any special values when 

something interesting happens e.g. a variable reaches a local maximum or minimum 

value or becomes zero or infinite? Is there a square root term which can become 

negative? Are there numerical ranges of some variables restricted in some way 

because of their contextual meaning? The models quantitative behavior can be 

investigated so some extent by rough estimates but a more careful examination 

requires compression with data. 

 

2.8 DISCRETE MODELS 

 

One of the main points of modeling is to predict the future development of a system. 

A model of the economy, for example, can be used to predict future trends and son 

provide a basic for policy decisions. Any such model relies on assuming that the rate 

of change of the variable x is linked to or caused by some or all of 

1. Present value of x 

2. Previous value of x 

3. Values of other variables 

4. The rate of other variables. 

5. The rate of change of other variables 

6. The time ‘t’ 
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The relationship that we want to model is the one that describes how x itself varies 

with time ‘t’ there are two very different ways of modelling such a relationship  

(a) We could think of x(t) as a continuous function of continuous time ‘t’ in this 

case the graph of x against ‘t’ would show some continuous curve and our modelling 

objective would be no write an explicit formula for x(t) in terms of ‘t’ 

(b) We could think about values of x only at particular pints in time, for example at 

intervals of one hour or once a month in this case we use a symbol such as xn to 

denote the value of x after ‘n’ intervals of time have passed. (The n is referred to as a 

subscript). A plot  of xn against n is now a set of separated points rather than a curve 

and we call this a discrete model. 

For discrete models the essential ingredient is an equation of the form. 

Next value= function of {present value and previous values and possibly time} 

Or in terms of symbols, 

 

 1 -1, ,n n nX f x x t             (2.8.1) 

 

This is usually called a difference equation note that before writing it down a 

considerable amount of thinking and choosing of modelling assumptions is normally 

necessary. Solving a difference equation means finding and explicit expression for xn 

in terms of n and initial value such as x0. Note, however, that this can be rather a 

difficult task and not strictly essential, because a model in the form of a difference 

equation can be used without knowing the mathematically solution of the equation. 

This is because if we know present the previous values of x we can always use 

difference equations   to generate the net value followed by as many values as we like 

of course, the advantage of having a formula for nx  in terms of n is that we can 

substitute any value of n we like into the formula to get an immediate answer. 
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As a simple example of difference equation, suppose 
np   represents an industry’s 

production output in year ‘n’ and that production doubles every year so that 

Net years production=2 x this years production 

That is  

 

1 2n np p     (2.8.2) 

 

If p0= production in year 0 then 1 02p p ,   2

2 1 0 02 2 2 2 2p p p p    and 

 2 3

2 0 03 2 2 2 2p p p p   . 

The pattern is clean the p values are going up in a geometric progression and the 

general solution is 02n

np p . A similar equation applies when even the growth rate is 

a constant percentage, for example if the growth rate is 25% per annum. Then the 

difference equation is  1 1.25  n np p   and the solution is   01.25
n

np p  these are 

example of the difference equation 1n nx ax   which corresponds to the assumption 

that a variable increases in a fixed ratio or (percentage) in each time step. The solution 

of this is 1 0

n

nx a x  (as can be verified  by changing in ‘n’ into n+1) the two statement 

1n nx ax   and 0

n

nx a x  are intact equivalent. The first is the difference equation and 

the seconds its solution. 

This kind to solution is very common with investment where interest accumulates at a 

constant r % per annum. If p0 is the initial amount of money invested, the amount pn 

after ‘n’ years satisfies the equation 1 1n n

r
p p

n


 
  
 

 and the second is its solution 

The next simplest type of difference equation is the first-order liner constant 

coefficient case, which we can write as  

1 .n nx a x b      (2.8.3) 

Starting with 0x  we get  

1 0X aX b   and    2

2 1 0 0 1x ax b a ax b b a x a b         its follows that  
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  2

3 2 0 1x ax b a a x a b b       

      2 2

0 1a x a a b     

Constituting in this way; 

 

 
2

1 2

 0 01  
1

n
n n n

n

a b
x a x a a a b a x

a


      


               (2.8.4) 

 

The last step comes from summing the geometric series and we have assumed that ‘a’ 

does not equal 1. If a does equal 1 then we can see that 2 0 3 02 , 3  x x b x x b    and so 

on, so in this case the solution is just n nx x nb   with some discrete modules of this 

kind we find that as ‘n’ increases the c values are approximating a “limit or 

equilibrium values”, although they never quite reach it, in thus case xn+1 eventually 

becomes indistinguishable from  then 1n nx x L   , so from the difference equation 

L aL b   and therefore the equilibrium value is 
1

b
L

a



 (provided we are not 

dealing with the case a=1) of course If we happen to start with 0x L  then we have  

nx L  forever. 

A difference equation connecting 1nx  end  nx  and no other x values is called a first-

order difference equation. If the equation also involved  1nx  or  2nx  we would call it 

second order in other words, the order is the difference between the highest and 

lowest subscripts appearing in the equation. Not surprisingly, first-order difference 

equations are the easiest to deal with more significant than the order is the question of 

whether the difference equation is linear. An example of a linear difference equation 

(this one happens to be second order) is 

2

1 12­ 3­ 7n n nx x x n         (2.8.5) 
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Note that the presence of the n2 does not make the equation non-linear. The important 

thing is that all the x-terms are only multiplied by constants. A  simple(and important) 

example of a non-linear difference equation is 

 1 1  n n nx ax x       (2.8.6) 

where ‘a’ is a constant. The solution of non-linear equations reveal a much strange 

and more varied behavior than that of linear equations and in some cases show the 

kind of behavior described as ‘chaos’. Difference equations are easiest to solve when 

there are homogeneous. This means that the equation can be satisfied by making the 

entire x’ s equal to 0. For example the equation  2 13­ 0 n n nx x x    is homogeneous. 

While 2 12 3n nx xn x    is not. It also makes things easier if the coefficients are 

constant. For example 2 13­ 0n n nx x x     has the constant coefficients, while 

2 13 0n n nx nx x     does not.  

 

2.8.1 MORE THAN ONE VARIABLE 

 

Suppose that in a battle between two opposing faces each unit of army A is able to 

destroy units of Army B charging one time unit. Similarly each unit of Army B is able 

to destroy b units of Army A. 

Let An denote the number of units of Army A surviving after n time steps, and 

similarly Bn for Army B. We therefore have two variables and their fates are 

obviously linked. How does this connection appear in a mathematical model? The 

answer is obtained by considering what happens in one time step. 

The total number of units of Army A destroyed during that time step is bBn because 

every one of the Bn units of Army B destroys b units of Army A. The number of 

surviving units of Army A at the beginning of the next time step is therefore. 

 

1n n nA A bB       (2.8.7) 

And similarly B,  
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1n n nB B aA       (2.8.8) 

Here we have two explicit but coupled difference equations, and neither one can be 

solved on its own. However, given initial sizes 0A  and 0B  for the two armies, and also 

given the parameters a and b,we could compute 
1A  and 

1B  etc. directly from the above 

difference equations. 

An alternative approach is to eliminate one of the variables by substitution. The first 

equation implies that 

 2 1 1n n nA A bB     

         1 n n nA b B aA    (substituting for 1nB  ) 

        n 1 n n 1 n A abA A A      (substituting for nB ) 

 

This is  

 2 12 1 0n n nA A ab A         (2.8.9) 

 

a second order difference equation. From it can be generate a sequence of An values 

provided two starting values, e.g.  0A  and 1A  are available.  Alternatively a 

mathematical solution for nA  in terms of n can be derived. 

2.8.2 MATRIX MODELS 

Linear difference equations involving more than one variable can be neatly expressed 

using vectors and matrices. The state of the battle in the previous example can be 

represented by the vector   ,  n n nx A B and pair of simultaneous difference equations 

can be written 

1

1

1

1
n n

n n

aA A
B Bb





             
    (2.8.10) 
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so the progress of the battle form one step to the next step can be written concisely as 

1n nx Mx  , 

Where M is the matrix   

1

1

a

b

 
 
 

    (2.8.11) 

and the solution can be written 0  n

nx M x . This approach is especially useful for 

models representing transitions between states or compartments. When developing 

models for populations, for example, we often want to do more than just predict the 

total size of the population. At any time a human population will consist of a mixture 

of individuals of different age, sex, occupation etc. in order to make forward planning 

for the provision of resources such as schools and hospitals we need to make 

predictions about the future number of individuals in different categories within the 

population. 

Let us take a simple and artificial example of a population of animals which become 

adult and capable of reproducing at the age of one year. Suppose we represent the 

population at time step n in terms of the numbers of animals in each of three 

categories. 

nB  = number of babies and young animals up to one year old 

nA  = number of young adult up to two years old 

nS  = number of senior adults aged two or older 

Then will be different annual birth and death rates for the three groups. Suppose we 

have the following information 

Group           Birth rate   Death rate 

B                0   0.1 

A                0.3   0.2    

S                0.1   0.3 

This means, for example, that 90% of babies survive to become adults and that 10% 

of senior adults produce one offspring per year on average.  
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 We can put this information into matrix form as 

1

0 0.3 0.1

0.9 0 0

0 0.8 0.7n n

B B
A A
S S



 
   

 
   
 

        

       (2.8.12) 

and to find what happens to the population we only have to keep multiplying by the 

matrix(often called the transition matrix). The nature of the solution and whether we 

eventually reach a steady state depends on the largest eigenvalue, λ, of this matrix. 

 If 1  then the population grows without limit. 

 If 1  then the population converges to the eigenvector associated with λ. 

 If 1  then the population continually decreases. 

 

2.9 CONTINUOUS MODELS 

2.9.1 LINEAR MODELS 

 

Linear models are a class of mathematical models used to represent relationships 

between variables in a linear fashion. These models are widely used in various fields, 

including statistics, mathematics, science, engineering, economics, and social 

sciences, due to their simplicity and interpretability. Here are some key characteristics 

and types of linear models: 

 

Characteristics of Linear Models: 

Linearity: Linear models assume that the relationship between the variables is linear. 

This 

means that when you plot the data on a graph, it forms a straight line (or a plane in 

higher dimensions). 

Additivity: Linear models assume that the effects of individual variables on the 

response variable are additive. In other words, changes in one predictor variable have 

a constant effect on the response variable, regardless of the values of other predictors. 
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Parameters: Linear models involve parameters that need to be estimated from the 

data. These parameters include coefficients (slopes) for each predictor variable and an 

intercept (constant term). 

Interpretability: Linear models are highly interpretable. The coefficients in the 

model represent the change in the response variable associated with a one-unit change 

in the predictor variable, holding all other variables constant. 

Assumptions: Linear models make certain assumptions, such as the normality of 

residuals (errors), constant variance of residuals (homoscedasticity), and 

independence of observations. Violations of these assumptions can affect the validity 

of the model. 

The following facts from coordinate geometry are useful 

Gradient (slope) or straight line =
increase in y

increase in x
 

                                                        = 2 1

2 1

y y

x x




 

if    1 1 2 2, ,  x y and x y are two points on the line  

Equations of straight line: 

1. With slope m and intercept  c on the y axis y=mx+c 

2. With intercepts a and b on the x-and y-axes respectively: 1
x y

a b
    

3. Passing through the point 0 0( , )x y  with gradient  m : 0 0( )y y m x x    

4. Joining the points 1 1( , )x y  and 2 2( , )x y : 1 1

2 1 2 1

y y x x

y y x x

 


 
 

Linear Models with Several Variables 

If the value of variable y is thought to depend on the values of a no.of. other variables 

1 2, ...........x x  the simplest way of expressing the dependence is through a linear model 

of the form 1 1 2 2 ................y a b x b x    the condition for this kind of model to be valid 

is that y changes by equal amounts for equal changes in any one of the variables. This 
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model is no more difficult to deal with than the single variable case, except when it 

comes to graphical interpretation. 

 

Simultaneous Linear Models 

We may have two or more dependent variables, all of which are modeled as linear 

functions of x. Questions of interest which then arise are: when are two variables 

equal (i.e. where do the lines cross) and when does one come above the other? 

Suppose, for example, that we have a choice between hiring two machines. Machine 

A can be hired for Rs.25 a week while machine B can be hired for Rs.150 plus Rs.10 

per week. Which is the cheaper machine if we want to use it for x weeks? 

The cost of hiring A for x weeks is 25Ay x  and for B the cost is 150 10By x  . The 

two are equal when 25 150 10x x  , i.e. 10x  . Also when  10x   we have 

A By y with the opposite being true when 10x  . The conclusion from this is that if 

we need a machine for less than 10 weeks the cheaper choice is A, otherwise choose 

B. 

 

Piecewise Linear Models 

A model does not have to be represented by the same single formula for all values of 

the variables x. for example, suppose certain items cost Rs.10 each to by, but if you 

buy more than 100, the price of any extra items drops to Rs.9 per item. The model for 

the cost of buying x items is then 

10 0 100
1000 9( 100) 100 9 100

x x
y

x x x
 


    

      (2.9.1) 

The two different linear expressions agree at x=100, so there in no sudden jump 

(discontinuity) at the change over point. 

In the previous example a piecewise linear model occurred naturally. We may 

sometimes choose to model a non-linear function approximately by a piecewise linear 

function. For example, suppose a car does about 40 miles per gallon of patrol at a 
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speed of 30m.p.h decreasing to 20miles per gallon at a speed of 70 m.p.h. and also 

decreasing to zero as the speed decreases from 30 m.p.h to zero. If we don’t know 

 the detailed shape of the graph we could represent the mileage rate R as piecewise 

linear function of speed (V) using  

 

4
0 30

3

55 30 70
2

V
V

R
V

V


 

 
   


             (2.9.2) 

 

 

 

2.9.2 QUADRATIC MODELS 

When a variable y does not change by equal amounts for equal changes in the x 

variable than a linear model is not suitable. A simple example of a non-linear model is 

the quadratic 2y ax bx c   , whose is a parabola. Three separate pieces of 

information are needed to determine the three parameters a, b and c . The value of a 

determines whether the curve is concave upwards (if a>0) or concave downwards. 

There is a vertical axis of symmetry at  
2

b
x

a
   ,which is also the x value at which 

the graph has a global maximum or minimum valve.The valve of the parameter c 

affects the vertical position of the curve relative to the coordinate axes. 

 

2.9.3 OTHER NON-LINEAR MODELS 

 

More flexibility is obtained by using higher degree polynomials with n+1 pieces of 

information being needed to determine the n+1 coefficients of a polynomial of degree 

n. There are also very simple non-linear models which are not polynomials, for 
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example models expressing inverse relationship between the variables such as  
k

y
x

  

or 
2

k
y

x
   . Other examples are models based on rational functions of the form 

2

2
, ,...................

a bx a bx cx

c dx d ex fx

  

  
       (2.9.3) 

and models expressed in terms of standard mathematical functions such as square 

roots, exponentials and logarithmic and trigonometric functions. The choice of an 

appropriate form is based on a mixture of experience and experimentation the 

question of the best values to take for the parameters is the subject of fitting models to 

the data. It is useful to have insight into the effects of charging each parameter in turn. 

Note that the effect of replacing the variable x by x-c in a model is to move the curve 

horizontally c units to the right without altering its shape. The effect of adding c to the 

dependent variable y is to shift the curve vertically upwards without altering its shape. 

Replacing x by cx  appears to alter the shape of the curve but can also be regarded as 

zooming in  1C   or zooming out ( 1)C  . A curve  ( )y f x   can be reflected in a 

horizontal line  y c   by taking 2 ( )y c f x   , and for the reflection in a vertical line 

x=c take ( )y f x c   

 

2.9.4 MODELS TENDING TO A LIMIT 

Very often physical variables increase gradually towards some upper limit or ceiling. 

An example is a living population whose size is limited by environmental factors 

examples of mathematical models with this kind of the behavior are 

1.  ( )cta be a as t    

2.  ( ) ( / )
at b

when ad bc a c as t
ct d


  


 

3.  1tan ( ) ( )
2

b
a b ct a as t

     

4.  
1 1

( )
ct

as t
a be a

 

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In these expressions t is time and a, b, c and d are positive constants. 

 The above examples are easily adopted to give curves that decrease gradually 

to a lower limit or floor, for example 

1.  ( )cta be a as t    

2.  ( ) ( / )
at b

when ad bc a c as t
ct d


  


 

3.  1tan ( ) ( )
2

b
a b ct a as t

     

4.  
1 1

( )
ct

as t
a be a

 


 

2.9.5 TRANSFORMING VARIABLES 

Starting from a variable with an infinite range, such as    0, ,or    we can 

construct variables with a finite range by using mathematical transformation. Suppose 

for example, that x goes from 0 to  . To get a range from 0 to 1 we could use for 

example 
1

x
U

x



. We could make the range [a,b] by taking 

1

ax b
U

x





. Alternative 

ways of achieving the same thing are ( )(1 )xU a b a e     and  

 

12( )(tan ) /U a b a x                     (2.9.4) 

 

Transforming variables will usually alter the shape of a curve and this can be useful in 

straightening curves. For example, if ny kx  then plot of ln y  against ln x  is a straight 

line and plotting logs often changes non-linear models into nearly straight lines. 

 

2.10 MODELLING RATES OF CHANGE 

One of the main points of modelling is try to predict what will happen, that is, we try 

to model how things change with time. Time itself can be modelled as continuous or 

discrete, and this is one of the modelling decisions which often have to be made. 

Sometimes there is a natural time interval at the end of which something happens, for 
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example the breeding season of a living population. In cases like these a discrete 

model of time is probably appropriate, with a time step equal to the time between 

breading season. The variable whose rate of change we are modelling can also be 

continuous or discrete. For discrete variable whose valve after n time steps is 
nx  , the 

change or increment during the nth step is  1n n nx X X      

The progression of nx  with time can be shown in a no.of ways, the most obvious 

being a plot of nx  against n. It could also be useful to plot the incremental change nx  

against n. Another possibility is to calculate the relative growth in each time interval 

from n
n

n

X
R

X


  which gives the growth as a proportion of the value of the variable at 

the beginning of the interval. This third possibility could be relevant in modelling the 

growth of an animal. Foe example, the table gives the weight in pounds of one baby 

during the first few months of her life 

_____________________________________________________________________ 

Age(months)       n              0           1             2             3             4 

Weight(lb)          nX
           8         10            13          16           20 

                             nX
                    2               3            3             4 

                             nR
                   0.250       0.300     0.231     0.250 

_____________________________________________________________________ 

We see that the absolute rate of growth for this period (as shown by nX ) was greatest 

in the fourth month, but the relative rate of growth (as shown by nR ) peaked in the 

second month. 

Discrete models are obtained by making assumptions about the rate of growth which 

then translate into a difference equation satisfied by nX
. The simplest types are the 

geometric  progression  1n nX aX 
and the linear form 1n nX aX b  

. It is useful to 

remember that a percentage change is equivalent to a multiplication, so if X changes 
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by r% it becomes 1
100

r
X

 
 

 
.  If, for example, the price of an item goes up by 3%, 4% 

and 2% in three consecutive years its final price is (1.03)(104)(1.02)= (1.092) times 

the original price, so the net increase in price over the three year period is 9.2624%. 

 

The rate of inflation is an introduction of the rate of increase in the average level of 

prices. This  is measured by comparing the retail price index with the value of the 

index twelve months earlier. The inflation rate is then calculated as an annual 

percentage rate, say I%. The actual annual percentage change (say X%) in a particular 

cost or income can be misleading because it disregards the effect of inflation. The 

increase ‘in real term’ or ‘allowing for inflation’ is required. A very common mistake 

is to take differences (X-I) % which comes from forgetting the multiplicative nature of 

percentage changes as mentioned in the previous paragraph. The fact that this is 

wrong can be seen by noticing that if inflation is I% the value of Rs1 decreases to  

Rs 1/ 1
100

I 
 

 
 in one year. An investment yielding an interest of X% p.a. gives for 

each Rs.1 an amount Rs. 1
100

X 
 

 
 after one year, but these are deflated Rs worth 

1/ 1
100

I 
 

 
each. The effective rate of interest is therefore given 

by 1 / 1
100 100

X I   
    

   
.   

 

When continuous model is chosen the techniques of differential calculus become very 

relevant. If ( )f t  is a function of time then as time changes from t to t t ,  

( )f t changes from ( )f t  to ( )f t t   and the change is represented by  f .  The 

quantities t  and f are referred differentials. 
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 The average rate of change of f is
changein f

changein time
, which is the ratio of the 

differentials or 

 

( ) ( )f t t f t

t

  


                            (2.10.1) 

Letting 0t  we get 

 

f df

t dt





                 (2.10.2) 

Which is the instantaneous rate of change of  f with respect to t. often referred to as 

the derivative and abbreviated to  1f . The differentials are related by 

 

df
f t

dt
                          (2.10.3) 

 

When more than one variable changes at the same time we use partial derivatives. In 

this example h is a function of   and x .if   Changes by    and x changes by x  

the change in h is  

 

h h
h x

x




 
    

 
                           (2.10.4) 

 

In geometric terms the value of 1f  at any point gives us. The gradient of the tangent 

of the graph of f at that point.  

If 1f  Is positive and increasing then the graph of f is concave up   f is increasing at 

an increasing rate ( 11 0f  ).  

If  1f  is positive but decreasing then the graph of f is convex up( or concave done)   

f is increasing at a decreasing rate( 11 0f  ) 
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The rate of change 1f  is the second derivative,  11f  ,which tells us how quickly the 

rate of change is itself changing.  

In economics, if C(x) is the cost producing x units, 1( )C x is often called the marginal 

cost and is the approximate cost of producing the next unit. Another concept from 

economics is elasticity of demand. If Q(P) is the demand when the price is P, the 

elasticity is 
(ln )

(ln )

d Q P dQ
E

d P Q dP

  
     

  
. Its significance is that if demand is inelastic. 

(E<1) then raising the price will increase the revenue (=QP), while the reverse is true 

for elastic (E>1) demand. 

Very often we have y= a function x, where x= a function of t, in which case we can 

find the rate of change of y from  

.
dy dy dx

dt dx dt
                     (2.10.5) 

  The fact that we have found a local minimum for the area and not a local maximum 

is obvious from the observation that we can make A is a large as we like by choosing 

x very small or very large. We do not need to calculate the second derivative etc. in 

pedantic fashion when we can use practical sense. This is the pragmatic modelling 

approach as opposed to the pure mathematical. 

 

2.10.1 DISCRETE OR CONTINUOUS 

 

In some problems a variable is very obviously discrete and no other way of 

representing it would be sensible. The harvesting of a crop, for example, usually 

happens once a year, not continuously though the year. In other cases the choice 

between a discrete model and a continuous one can be difficult. It is by no means true 

that the discrete choice is the easiest. It very much depends on the problem being 

investigated. Generally speaking a continuous model is suitable when the time 

interval between measurements is small. In going from a discrete model to a 

continuous one, the change in a unit time interval, which is 1n ny y   , is replace by 1y . 
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One advantage of a continuous model is that a differential equation may be easier to 

manipulate and solve than a difference equation; and(if we solve it exactly) we finish 

up with a solution which we can use for any value of t. paradoxically, if we use a 

numerical method to solve the continuous differential equation, we are in fact 

changing the problem back into discrete from! Note that some problems require both 

discrete and continuous elements together, for example, grass may grow continuously, 

butt is usually only cut on certain days. 

The simplest models are 

Discrete 

Arithmetic                 1n nX X c    

Geometric                1n nX aX   

Linear first order     1n nX aX b    

 

Continuous 

Linear                       y a bt   

Power law               by at  

Polynomial             2 3 ..............y a bt ct dt      

Exponential           bty ae  

 

Note the distinction between the power law and exponential models(the t   is in the 

exponent in exponential model).Also note that  ty a  and kty e  are equivalent since 

ln .lny t a  In the first case and ln y kt  in the second, and they are the same if 

lnk a  
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CHAPTER - 3                                      STATISTICAL GROWTH MODELS 

 

3.1 INTRODUCTION 

Statistical aspects play a crucial role in the development, estimation, validation, and 

interpretation of growth models. Whether you are working with biological, economic, 

or population growth models, statistical techniques help you make inferences, 

quantify uncertainty, and assess the goodness of fit of your models. Here are some 

key statistical aspects associated with growth models: 

Parameter Estimation: Growth models often have parameters that need to be 

estimated from observed data. Statistical methods like maximum likelihood 

estimation (MLE) or least squares fitting are used to find the values of these 

parameters that best fit the model to the data. 

Model Selection: Statistical criteria, such as the Akaike Information Criterion (AIC) 

or the Bayesian Information Criterion (BIC), are used to compare different growth 

models and select the one that provides the best trade-off between goodness of fit and 

model complexity. 

Model Validation: Statistical tests and diagnostics are applied to validate growth 

models. Residual analysis, hypothesis tests, and goodness-of-fit tests (e.g., chi-square 

test) can help assess whether the model adequately describes the data. 

Confidence Intervals: Statistical techniques are used to calculate confidence 

intervals around parameter estimates. These intervals provide a measure of 

uncertainty about the true values of the parameters. 

Heteroscedasticity: Growth models often assume homoscedasticity (constant 

variance of errors), but in practice, variances may change with time or other factors. 

Statistical tests for heteroscedasticity help identify violations of this assumption. 

Autocorrelation: In time series growth models, autocorrelation (correlation of 

observations with past observations) can be a concern. Statistical tests, such as the 

Durbin-Watson test, help detect and correct for autocorrelation. 
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Prediction Intervals: In addition to point estimates of future values, statistical 

methods can provide prediction intervals, which give a range within which future 

observations are likely to fall. These intervals account for both parameter uncertainty 

and residual variability. 

Model Assumptions: Growth models make assumptions about the distribution of 

errors (e.g., normally distributed errors in linear regression) and other underlying 

statistical properties. Checking these assumptions is crucial for model validity. 

Outlier Detection: Statistical techniques can identify outliers or influential data 

points that may disproportionately affect model results. Robust regression methods 

can be used to mitigate the impact of outliers. 

Nonlinearity: Growth models may involve nonlinear relationships. Statistical 

methods for nonlinear regression are used to estimate parameters in these cases. 

Bootstrap Resampling: The bootstrap method can be used to estimate the sampling 

distribution of model parameters or to assess model uncertainty when the assumptions 

of traditional statistical tests are not met. 

Bayesian Growth Models: Bayesian statistics offers a framework for estimating 

parameters and making predictions in growth models while explicitly incorporating 

prior information and quantifying uncertainty through posterior distributions. 

Model Diagnostics: Various graphical and statistical tools, such as residual plots, Q-

Q plots, and leverage plots, help diagnose potential issues with growth models, 

including heteroscedasticity, nonlinearity, and influential observations. 

Cross-Validation: Cross-validation techniques, such as k-fold cross-validation, are 

used to assess the predictive performance of growth models and to prevent overfitting. 

Time Series Analysis: Time series models, including autoregressive integrated 

moving average (ARIMA) models, are applied to growth data with temporal 

dependencies, helping to capture trends, seasonality, and autocorrelation. 

Spatial Growth Models: For spatial growth models, spatial statistics, geostatistics, 

and spatial autocorrelation techniques are used to account for spatial dependencies 

and patterns. 
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Statistical aspects are essential for ensuring the robustness, validity, and 

generalizability of growth models. Effective use of statistical methods can help 

researchers and analysts draw meaningful conclusions from growth data and make 

accurate predictions about future growth trends. 

Business is a dynamic affair and dynamism is related to time factor. There are many 

factors which change with the passage of time, i.e., as time passes, their values also 

changes. For example, the sales of a product, the population of a country, demand of 

commodities, prices etc., may increase with time. Arrangement of statistical data on a 

study variable in chronological order i.e., in accordance with occurrence of time is 

known as ‘Time Series Data’. 

 

3.2 MEASURES OF LINEAR AND COMPOUND GROWTH RATES 

3.2.1 LINEAR GROWTH RATE 

The linear growth rate, often referred to as the constant linear growth rate, is a 

measure of how a quantity increases or decreases over time in a linear fashion. It 

represents the rate at which a quantity changes by a fixed amount per unit of time. In a 

linear growth or decay model, the quantity increases or decreases at a constant rate 

over time. 

The Linear Growth Rate (LGR) in a study variable (Y), for an absolute change in a 

time variable (t) is defined as the ratio of relative change in Y to the absolute change 

in t, multiplying by 100. 

i.e.,    

 LGR = 100
relativechangeinY

absolutechangeint

 
 
 

              (3.2.1)                                                                               

 

Symbolically, for small changes in Y and t, LGR may be approximated by  

LGR= 2 1 1

2 1

( ) //
100 100

Y Y YY Y

t t t

   
   

    
                                 (3.2.2)        

or  
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LGR= 2 1 2

2 1

( ) /
100

Y Y Y

t t

 
 

 
                                          (3.2.3)                                                                        

or 

 LGR= 2 1

2 1

( ) /
100

Y Y Y

t t

 
 

 
 

                  (3.2.4) 

Where 1 2

2

Y Y
Y
 
        

Here, 1Y  and  2Y  are the values of Y for the time periods 1t  and 2t                                                                                                  

3.2.2 COMPOUND GROWTH RATE 

Compound growth rate, often referred to as the compound annual growth rate 

(CAGR), is a measure used to determine the annual growth rate of an investment, 

asset, or quantity when the value changes over multiple periods. CAGR takes into 

account the compounding effect, which means that each year's growth builds upon the 

previous year's growth. It provides a single, consistent growth rate over a specified 

time frame, allowing for easy comparison of different investments or the evaluation of 

an investment's performance. 

Suppose 0Y be the initial value of study variable Y and it will grow into the value nY  

after n years of  annual compounding at the growth rate r per annum, then, by 

compound interest formula, we have,  

0 1
100

n

n

r
Y Y

 
  

 
                       (3.2.5) 

 

Given the values of 0Y , nY  and n, the Compound Growth Rate (CGR) is given by  

    

CGR=

1

0

1 100
n

nY
r

Y

 
     
 
  

                                                 (3.2.6) 
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3.3 STATISTICAL ESTIMATION OF LINEAR AND COMPOUND GROWTH 

       RATES 

Under statistical method of estimation, we first fit a linear or an exponential model to 

the given time series data by applying the Least Squares method. Later, the LGR or 

CGR may be computed by using the estimate of the parameter of the model. Since, 

this method uses all the observations in the data; it gives better approximation than the 

mathematical measure for the growth rate. By this method, the significance of the 

growth rate can also be tested. 

We denote the coded time variable by X with the starting period as 1 and subsequent 

periods by 2,3,4…. n. Let the sample values of the study variable in sequence of time 

be Y1,Y2,...... Yn. Now, the time series data may be represented as: 

      Time (t)               :    1t     2t ………… nt  

      Coded time (X)   :    1     2…………   n     

      Study variable     :    1Y
    

2Y
...............   nY

 

  

(a) Linear Growth Rate (LGR) 

Suppose there exists a linear relationship between a study variable (Y) and a 

time variable (t) as  

 

, 1,2,.......,i iY a bt i n                            (3.3.1) 

 

By using g coded time variable X in the place of t, the linear model can be 

written as 

 

, 1,2,.......,i iY a bX i n                       (3.3.2) 
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or simply, Y a bX  . By adding an error term  , the statistical linear regression 

model is given by  

 

Y a bX                   (3.3.3) 

 

where,     Y: dependent variable ( Study variable) 

                  X: Independent variable (Coded Time variable)  

and a, b  are the parameters of the linear model. The Least Squares Estimates (Best 

Estimates) of a and b are given by  

 

  

 
2

2

X Y
XY

nb
X

X
n



 
 
 
 
 
  

 





                       (3.3.4) 

 

And   

_ _

a Y b X
 

               (3.3.5) 

Here 
   _ _

,
X Y

X Y
n n

 
 

 and n is the of observations. The estimated linear model 

is given by Y a b X
  

   . This estimated model will be used for the prediction analysis. 

An estimate of LGR is now given by  

 

LGR= 
_

100
b

Y

 
 
 
 

                         (3.3.6) 
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3.3.1 TEST OF SIGNIFICANCE OF LGR  

 To test for the significance of LGR, we use the following student’s t-test 

statistic: 

  
. ( )

b
t

S E b




                          (3.3.7) 

or  

 

 

 
2

2
X

b X
n

t














                            (3.3.8) 

 

Where  

 

    
2

2

2

Y X Y
Y b XY

n n

n






   
    
     



  
 

     (3.3.9) 

 

 We compare the calculated value of   t   with its critical value (table value) for (n-2) 

degrees of freedom at a desired level of significance and draw the inference 

accordingly. i.e., if the calculated valve of t  is greater than its critical value, then the 

LGR is said to be significant at the desired level of significance. Otherwise, LGR is 

said to be not significant. 

Remark:  

Here, the Standard Error (SE) of b


 is given by 

                     

 
2

2

. ( )S E b

X
X

n













                                             (3.3.10) 
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(b) COMPOUND GROWTH RATE 

 Consider the formula for compound interest as  

 

0 1
100

n

n

r
Y Y

 
  

 
                              (3.3.11) 

 

If we replace nY  byY ; 0Y by a, 1
100

r 
 

 
 by b and n by a coded time variable X, then 

we will have an exponential functional relationship between Y and X as 

 

XY ab                            (3.3.12) 

 

Where Y: Dependent variable (study variable) 

              X: Independent variable ( coded time variable) 

and a,b are the parameters of the exponential model. Since, directly fitting of 

exponential model involves several difficulties, we generally transform the model into 

a log-linear form and then it may be fit to the data. 

 Taking logarithms on both sides of the model, we get 

 

log log logY a X b        (3.3.13) 

or 

Y A BX  ,which is a linear model. 

Here, log , log , logY y A a B b    

The least squares estimates of A and B are given by 

 

  

 
2

2

,

X Y
XY

nB
X

X
n



 
 
 
 
 
  

 





                (3.3.14) 
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_ _

A Y B X
 

                       (3.3.15) 

 

Here, n is the number of observations. 

 The estimated linear model is given byY A B X
  

  . An estimated of original 

parameter b is given by log( )b Anti B
 

  

Thus, 

 

 1
100

r
b b


  

  
 
 

                               (3.3.16) 

Hence, an estimate of CGR is now given by 

CGR= ( 1)100r b
 

                            (3.3.17) 

 

3.3.2 TEST OF SIGNIFICANCE OF CGR 

 

 To test for the significance of CGR, we use the following student’s t-test 

statistic 

 

. ( )

B
t

S E B




                              (3.3.18) 

or   

 

 
2

2
X

B X
n

t














           (3.3.19) 

Where  
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    
2

2

2

Y X Y
Y B XY

n n

n






   
    
     



  
 

   (3.3.20) 

 

 We compare the calculate value of t  with its critical value for (n-2) degrees of 

freedom at an appropriate level of significance and draw the inference accordingly. 

Remark:  

1. Suppose  1b


 and 2b


be the estimates of parameters of linear models of two time 

series data respectively. The Linear Growth Rates of the two time series data can be 

compared by using the following student’s t-test statistic as 

 

1 2

2 2

1 2. ( ) . ( )

b b
t

S E b S E b

 

 




   
      

        (3.3.21) 

 

where, S.E. denotes the standard error of estimate. 

  

We compare  t  value with the critical value of t-test statistic for 1 2( 4)n n   degrees 

of freedom at a desired level of significance and draw the inference accordingly. 

Here, 1n and 2n  a number of observations in two time series data respectively. 

2. Suppose we wish to investigate whether there is any change in the growth of 

production between wartime and peace time periods (or any two different time 

periods) .Such a change is referred to as a ‘structural change in the growth’. It can be 

tested by using a test given in ‘Econometrics’ known as Chow test for structural 

change. 

 



 

Statistical Growth Models 

@Sahasra Publications                                                                                                                       63 

 

3.4 THE GOMPERTZ CURVE AS A GROWTH CURVE 

The Gompertz curve, named after Benjamin Gompertz, is a mathematical function 

that is often used as a growth curve to describe the growth of biological populations, 

particularly those that exhibit sigmoidal or S-shaped growth patterns. It has 

applications in fields such as biology, epidemiology, demography, and economics. 

The Gompertz curve is characterized by its ability to model both exponential growth 

in the early stages and decelerating growth in the later stages. Here's a description of 

the Gompertz curve as a growth curve 

In 1825 Benjamin Gompertz published a paper in the philosophical transaction of the 

Royal Society “On the Nature of the Function Expressive of the Law of Human 

Mortality”, in which showed that “if the average exhaustions of a man’s power to 

avoid death were such that at the end of equal infinitely small intervals of time, he lost 

equal portions of his remaining power of oppose destruction” then the number of 

survivors at any age x would be given by the equation. 

xc

xL kg       (3.4.1)  

(It is clear that Gompertz means equal proportions, not equal absolute amounts, of the 

“power to oppose destruction.”) 

 

The Gompertz come was for long of interest only to actuaries.  More recently, 

however, it has been used by various authors as a growth curve, both for biological 

and economic phenomena.  It is the purpose of the present note to consider some of 

the mathematical properties of this curve, and to indicate to some extent its usefulness 

and its limitations as a growth curve. 

For actual purposes the curve is generally written in the form (3.4.1), but for our 

purpose it is more convenient to write it 

   .
a bxey k e
                                       (3.4.2)  

in which k and b are essentially positive quantities. 
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From (3.4.2)) it is clear that as x becomes negatively infinite y will approach zero, and 

as x becomes positively infinite y will approach k.  Differentiating (3.4.2) we have. 

a bxa bx e a bxdy
kbe e bye

dx

                                              (3.4.3)  

 

and it is apparent that the slope is always positive for finite values of x, and 

approaches zero for infinite values of x.  Differentiating again we have 

2
2

2
( 1)

a bx a bxd y
b ye e

dx

 

                                      (3.4.4)  

From (3.4.4) we see that there will be a point of inflection when
a

x
b

  

The ordinate at the point of inflection is 
k

y
e

  

Or approximately, when 37% of the final growth has be reached. 

Equations 

Gompertz  
xey e

  

Logistic  
1

1 x
y

e



 

When we describe, therefore, to fit growth data, which show a point of inflection in 

the early part of the growth cycle, when approximately 35 to 40 percent of the total 

growth has been realized, we may use the Gompertz curve with the expectation that 

the approximation to the data will be good.  There seems, however, no particular 

reason to expect that the Gompertz curve will show any wider range of fitting power 

than any other three-constant S-shaped curve. For example the logistic 

1 a bx

k
y

e 



                                                              (3.4.5)  

possesses the same number of constants as the Gompertz curve, but has the point of 

inflection mid-way between the asymptotes.  The degree of “skewness” in the 

Gompertz curve is just as fixed as in the logistic, and it is clear that to introduce a 

variable degree of skewness into a growth curve will require at least four constants. 
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To illustrate the mathematical properties of the Gompertz curve and the logistic, the 

following table has been prepared 

Property Gompertz Logistic 

Equation a bxey ke
  

1 a bx

k
y

e 


  

Number of constants 3 3 

Asymptotes 0y   

y k  

0y   

y k  

Inflection a
x

b


 

k
y

e


 

a
x

b


 

2

k
y 

 

Straight line form do 

equation 

log log
k

a bx
y
 

 
log

k y
a bx

y


 

 

Summary Asymmetrical Symmetrical about 

inflation 

Growth rate 
loga bxdy k

bye by
dx y

 

 
( )

dy b
y k y

dx k
 

 

Maximum growth rate bk

e  4

bk

 

Relative growth rate as 

function of time  

1 a bxdy
be

y dx



 

1

1 a bx

dy b

y dx e 


  

Relative growth rate as 

function of size 

1
(log log )

dy
b k y

y dx
 

 

1
( )

dy b
k y

y dx k
 

 

 

The parallelism between the Gompertz curve and the Logistic may be carried further.  

It has been found useful, for example, to add a constant term to the Logistic, giving it 

a lower asymptote different from zero. 

1 a bx

k
y d

e 
 


                                                     (3.4.6) 
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Clearly this procedure is equally applicable to the Gompertz curve, giving 

a bxey d ke
                                                         (3.4.7)  

It is also clear that in general the sum, or the average, of several Gompertz curves will 

not be a Gompertz curve, just as several logistics do not; in theory, give a logistic 

when added or when averaged.  But just as it has been found in practice that the sum 

of a number of logistics does in fact often approximate closely a logistic as has shown 

by reed and pearl(1927).  It will be true that Gompertz curves will often add to give 

something very close to a Gompertz curve. And the general theory of averaging 

growth curves work by Merrell (1931) and applied by her to the logistic can be 

applied without modifying to the Gompertz curve. 

It may be further pointed out that the Gompertz curve may be generalized in the 

manner in which peral and reed (1923) have generalized the logistic. Pearl and Read  

tset 

( ) ( )
dy b

y k y f x
dx k

        (3.4.8)  

And on integration obtain. 

( )1 F x

k
y

e



                                                             (3.4.9)  

And assuming that F(x) can be expressed as a Taylor’s series, they reach 

2 3
0 1 2 3 ..................

1
a x a x a x a x

k
y

e
   




        (3.4.10)  

In a similar fashion, the differential equation of the Gompertz curve may be written 

(log log )
dy

by k y
dx

                    (3.4.11)  

and if we add an arbitrary function of time on the right hand side of this equation 

(log log ) ( )
dy

by k y f x
dx

                                                  (3.4.12)  

We have on integration 

( )F xey ke                                                                    (3.4.13)  

and if  F(x) can be expressed in a Taylor’s series. We have 
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2 3 ..................0 1 2 3a x a x a x a x
ey ke

   
                                              (3.4.14)  

It will be noted that if we wish to use only a finite number of terms in the power 

series, we must keep and odd power of x for our highest term, if our curve is to run 

from y=0 to y=k.  This restriction applies to both the generalized logistic and the 

generalized Gompertz curve. 

We may rationalize the derivation of the Gompertz curve along the lines indicated by 

Ludwig (1929).  Ludwig postulates that the relative growth rate 
1 dy

y dx
 

must decrease monotonically with continued growth. 

If now we write 

1 dy
m ny

y dt
                                                                (3.4.15)  

We have the differential equation of the logistic.  In this case the relative growth rate 

decreases as a linear function of growth already reached.If we set 

1 qxdy
pe

y dx

                                 (3.4.16)  

 Characteristics: 

Sigmoidal Shape: The Gompertz curve has an S-shaped or sigmoidal shape, which 

means that initially, growth is close to exponential, then it decelerates, and eventually 

levels off as the population approaches an asymptote. 

Inflection Point: The inflection point is the point on the curve where the rate of 

growth is at its maximum. This is also the point where the curve changes from 

accelerating growth to decelerating growth. 

Asymptote: The asymptote is a horizontal line that the curve approaches but never 

reaches. It represents the maximum attainable population or quantity. 

Parameters: The curve is defined by the parameters  

These parameters determine the initial population, growth rate, and timing of the 

inflection point, respectively. 

Applications: 
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The Gompertz curve is used in various applications: 

Population Biology: It can describe the growth of populations of organisms, such as 

bacteria, animal populations, or tumor growth. 

Epidemiology: The Gompertz curve is used to model the spread of diseases within a 

population. It helps predict when an epidemic is likely to peak and when it will slow 

down. 

Demography: In demography, the Gompertz curve can model the mortality rate of a 

population as it ages. The curve shows an increasing mortality rate with age. 

Economics: It can be applied to modeling the adoption of new technologies or 

products in a market, where initial adoption is rapid, but growth slows as saturation is 

reached. 

Quality Control: In manufacturing and quality control, the Gompertz curve can be 

used to model the failure rates of products over time. 

Finance: The Gompertz curve can describe the growth of investment portfolios or 

financial assets over time. 

Overall, the Gompertz curve is a versatile tool for modeling growth and saturation 

processes in a variety of fields. Its sigmoidal shape and parameterization make it 

suitable for describing a wide range of growth and decline phenomena. 

 

3.9.3 METHOD SELECTION  

We have described two graphical methods and three analytical methods for estimating 

Weibull parameters   and   . Now, the question is which method do we use? The 

answer depends on whether one needs a quick or an accurate estimation. In what 

follows, the methods are ranked according to their accuracy or speed. The order of the 

methods based on their speed (computing time) are 

1. Any graphical method. 

2. Least Squares Method. 

3. Maximum Likelihood Estimator. 

4. Method of Moments. 
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The order of the methods based on their accuracy are 

1. Applying the three analytical methods (MLE,MOM and LSM) and selecting the     

    best one which gives the minimum mean squared error. 

2. Method of Moments. 

3. Maximum Likelihood Estimator. 

4. Least Squares Method. 

5. Any graphical method. 

 

3.10   FITTING OF SOME SPECIAL TYPES OF GROWTH CURVES 

The various nonlinear growth curves such as the Modified exponential, Gompertz and 

Logistic curves cannot be fitted by the principle of least squares became the models 

for these curves involve the number of parameters more than the number of variables, 

these growth curves can be fitted to the time series data by using some special 

methods such as Method Of Three Selected  Points, Method Of Partial Sums, Yule’s 

Method, Hotelling’s Method, Successive Approximation Method, Maximum 

likelihood Method and Linearization by Taylor Series expansion Method. 

3.10.1  FITTING OF MODEIFIED EXPONENTIAL GROWTH CURVE 

Consider the growth model for the modified Exponential Growth Curve as 

t

tY a bc                                              (3.10.1) 

Where tY  is the value of the study variable at the time period t  and a, b, c are 

unknown parameters 

(A) Method Fof Three Selected Points 

One may take three ordinates 1 2 3, andY Y Y  to three equidistant values of 1 2 3, andt t t t  

respectively such that 2 1 3 2t t t t    .        (3.10.2) 

Substituting values of 1 2 3, andt t t  in (3.10.1) one may get 

1

1

tY a bc            (3.10.3) 

2

2

tY a bc                         (3.10.4) 
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3

3

t
Y a bc            (3.10.5) 

1 2 1

2 1 ( 1)t t tY Y bc c                      (3.10.6) 

And                                                         

3 22

3 2 ( 1)
t ttY Y bc c


           (3.10.7) 

 

2 13 2

2 1

t tY Y
c

Y Y


 


                           (3.10.8) 

 

 2 1

1

3 2

2 1

t tY Y
c

Y Y

 
  

 
                                           (3.10.9) 

Substituting for c in (3.10.6) we get 

 
1

2 1
3 2 3 2

2 1

2 1 2 1

1

t

t tY Y Y Y
Y Y b

Y Y Y Y

    
     

    
 

   
1

2 1

2

2 1 2 1

3 2 1 3 22

t

t tY Y Y Y
b

Y Y Y Y Y

  
   

   
                                 (3.10.10) 

Substituting b and c in (3.10.3)  

 
1

2 2
2 1 1 3 2

1 1

3 2 1 3 2 12 2

t
Y Y YY Y

a Y bc Y
Y Y Y Y Y Y

  
     

     

 

Substituting for a, b and c from (3.10.3), (3.10.4) and (3.10.5) get the equation of the 

Modified Exponential Curve fitted to the given time series data 

1 2 3, andY Y Y  being ordinates of the free hand curve corresponding to the three selected 

points 1 2 3, andt t t t  

(B) Method Of Partial Sums 

The given time series data are split up into three equal parts each containing, (say) n  
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consecutive values of 
tY  corresponding to 1,2,.....,t n ; 1, 2,....., 2t n n n   ; 

2 1,2 2,.....,3t n n n   . Let 
1 2 3, andS S S  represent the partial sums of the three parts 

respectively so that  

2 3

1 2 1

1 1 2 1

,
n n n

t t t

t t n t n

S Y S Y and S Y
    

                                      (3.10.11) 

Substituting for tY  (3.10.1), one may get 

 

  2

1

1

1
( ...... )

1

nn
t n

t

c
S a bc na b c c c na bc

c

 
          

 
  (3.10.12) 

Similarly we shall get 

 

1

2

1

1

n
n c

S na bc
c

  
   

 
                              (3.10.13) 

And                             2 1

3

1

1

n
n c

S na bc
c

  
   

 
                      (3.10.14) 

 

Substituting (3.10.12) from (3.10.13), and (3.10.13) from (3.10.14) one may get 

 

 
2

2 1

1

1

nc
S S bc

c


 


             (3.10.15) 

And                                         
 

2

1

3 2

1

1

n

n
c

S S bc
c




 


    (3.10.16) 

 

Dividing (3.10.16) by (3.10.15), we have  

 

1/

3 2 3 2

2 1 2 1

n

nS S S S
c c

S S S S

  
    

  
   (3.10.17) 

Substituting for nc  in (3.10.15), we get 
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2

3 2
2 1

2 1

1
1

S Sbc
S S

c S S

 
   

  
     

3

2 1

3 2 1

( 1)( )

( 2 )

c S S
b

c S S S

 
 

 
                       (3.10.18) 

 

Finally substituting the values of b and c in (3.10.12) 

                                                       

            1

1
1

1

nbc
a S c

n c

 
    

 

           
3

2 1
1 2

3 2 1

( )1
1 From(3.10.18)

( 2 )

nS S
S c

n S S S

 
   

  
 

                                                           

 
3

3 22 1
1 2

3 2 1 2 1

( )1
1 From(3.10.17)

( 2 )

S SS S
S

n S S S S S

  
    

    
 

                
2

2 1
1

3 2 1

( )1

2

S S
S

n S S S

 
  

  
 

   
2

1 3 2

3 2 1

1

2

S S S

n S S S

 
  

  
                                   (3.10.19) 

 

3.10.2 FITTING OF GOMPERTZ CURVE 

Gompertz curve is given by the equation 

tc

ty ab                               (3.10.20) 

where ty  is Time-Series value at time t and a, b, c are its parameters 

log log log . t

ty a b c   

t

tY A Bc              (3.10.21) 

where log , log logt tY y A a and B b    
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Now  (3.1.21) is a modified exponential curve and the constants A, B and C can be 

estimated by the method of three selected points or by the method of partial sums. 

 

3.10.3 FITTING OF LOGISTIC GROWTH CURVE 

Let us consider the Logistic growth curve 

; 0, max( )
1

t ta bt

k
Y b k Y

e 
  


   (3.10.22) 

Where t, tY  are variables and a, b, and k are the unknown parameters. One may 

discuss below various methods of fitting of Logistic curve. 

 

(A) Method Three Selected Points 

Given time-series data is first plotted on a graph paper and a trend line is first drawn 

by freehand method. Three ordinates 1 2 3, ,Y Y Y  taken from the trend line corresponding 

to selected equidistant points of time, say 1 2 3, ,t t t t t t    respectively such that 

2 1 3 2t t t t   . 

Substituting the values 1 2 3,t t t and t  in (3.10.22) we get 

      
1

1 1

1

log 1
1 a bt

k k
Y a bt

e Y

 
     

  
 

2
2 2

2

log 1
1 a bt

k k
Y a bt

e Y

 
     

  
   (3.10.23) 

  
3

3 3

3

log 1
1

a bt

k k
Y a bt

e Y


 
     

  
 

2
2 1

1

( / ) 1
( ) log

( / ) 1

k Y
b t t

k Y

 
   

 
 

3
3 2

2

( / ) 1
( ) log

( / ) 1

k Y
b t t

k Y

 
   

 
       

(3.10.24) 

Since the points are equidistant i.e. 2 1 3 2t t t t    we get 
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32

1 2

( / ) 1( / ) 1
log log

( / ) 1 ( / ) 1

k Yk Y

k Y k Y

   
   

    
 

2

3 1 2

1 1 1
k k k

Y Y Y

    
        

    
 

2 2

2 3 1 1 3 2( )( ) ( )Y k Y k Y YY k Y      

2 2 2 2

2 1 3 1 3 1 3 2 2( ) ( 2 )Y k k Y Y YY YY k Y kY          

 2 2 2

2 1 3 2 1 3 1 2 3( ) 2k Y YY k Y Y Y YY Y        

Since 0k  , one may get 

2

2 1 3 1 2

2

2 1 3

( ) 2Y Y Y YY Y
k

Y YY

 



               (3.10.25) 

From (3.10.24) and (3.10.23), one may get 

 

2 1

2 1 1 2

( )1
log

( )

k Y Y
b

t t k Y Y

 
  

  
              (3.10.26) 

1
1

1

log
k Y

a bt
Y

 
  

 
                (3.10.27) 

(B) Yule’s Method  

Suppose that the value of k is approximately known or obtained by other methods. 

Then the Logistic Growth Curve (3.10.22) contains two parameters a and b, and two 

variables and tt Y . 

Hence the principle of least squares can be used to estimate a and b  

From (3.10.22) 

log 1
k

a bt
Y

 
   

 
                       (3.10.28) 

Or               U a bt   

Where log 1
k

U
Y

 
  

 
 (3.10.28) represents a linear trend and according to the 

principle of least square, the normal equations for estimating a and b are 
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U na b t    

      
2

Ut a t b t     

(C) Hotelling Method 

A very elegant and ingenious method for fitting a Logistic Growth curve is given by 

Hotelling. One may have 

; 0
1

t a bt

k
Y Y b

e 
  


 

 

The rate of growth is given by 

 
2

. .
1

a bt

a bt

dY k
b e

dt e









 

.
1 1

a bt

a bt a bt

k k
b e

e e



 

  
    

   
 

. 1
Y k

bY
k U

 
   

 
 

. 1
Y

bY
k

 
   

 
 

1
. 1

dY Y
b

Y dt k

 
    

 
 

If the interval is not too large, then as an approximation to 
1 dY

Y dt
 One may take 

1 tY

Y t




 

thus one may get 

1 t
t

t

Y b
b Y

Y t k


  


     (3.10.29) 

Or                                   U A BY                          (3.10.30) 

 

Where 
1

,t

t

Y b
U A b and

Y t k


   


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A and B and consequently b and k can be estimated from (3.10.30) by the principle of 

least squares  

 The constant a is then obtained by assuming that the curve 

; 0, max( )
1

t ta bt

k
Y b k Y

e 
  


 passes through the mean value of Y And mean of t. 

 

(D) Method Of Successive Approximation 

If some approximation values of the parameters k, a, b are known, then a first 

correction for each of these can be obtained by the principle of least squares. Let us 

suppose the first correction for k, a and b are , and    respectively so that 

 1 exp ( )
t

k
Y

a b t



 




   
 

      
1 exp( )exp( )

k

a bt t



 




  
 

       
( )1 (1 )a bt

k

e t



 




  
 

 

Higher powers of and   being ignored since and   are very small 
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Higher powers being neglected. 
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               (3.10.31) 

Terms involving and  . being ignored (3.10.31) may be rewritten as, say, 
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t t t t tY A B C D       

Where , , andt t t tA B C D  are known. Since k, a and b are known. , and    can be 

obtained by the principle of least squares. 
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CHAPTER - 4                                     POPULATION GROWTH MODELS 

 

4.1 POPULATION GROWTH RATE 

Population growth is the change in a population over time and can be quantified as the 

change in the no. of   individuals of any species in a population using “per unit time” 

of for measurement. 

(A) Determination of Population Growth 

Population growth is determined by four factors Births (B), Deaths (D), immigration 

(I) and emigrants (E) using a formula expressed as 

                    ∆P = B- D + I – E      

In the other words, the population growth of a period can be calculated in two parts, 

natural growth of population (B-D) and mechanical growth of population  (I- E) in 

which Mechanical growth of population is monthly affected by a social factors  e.g. 

the advanced Economics are growing faster while the backward economies are 

growing slowly even with negative growth. 

(B) Population Growth Rate 

In demographic and ecology, population growth rate (PGR) is the fractional rate at 

which the no. of individuals in a population increases. Especially PGR ordinarily 

refers to the change in population over a unit time period often expressed as a 

percentage of the no. of individuals in the population at the beginning of that period. 

This can be written as the formula  

    –     
 

   

Population at end of period Population at beginning of period
Growth rate

Population at beginning of period
     

(In the limit of a sufficiently small time period) 

The above formula can be expanded to  

Growth rate = Crude birth rate – Crude death rate + net immigration rate. 

                            Or  

- -
P B D I E

P P P P P

        
        
       
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Where P is the total population, 

           B is the no. of Births  

           D is the no. of Deaths 

           I is the no. of immigrants 

          E is the no. of Emigrants 

This formula allows for the identification of the source of population growth whether 

due to natural increase or an increase in the net immigration rate. Natural increase is 

an increase in the native born population. Stemming from either a higher birth rate or , 

a lower Death rate or a combination of the two. Net immigration rate is the difference 

between the no. of immigrants and the no. of Emigrants. 

The most common way to express population growth is as a ratio, not a rate. The 

change in population over a unit time period is expressed as a percentage of the 

population at the beginning of the time period. That is  

Growth ratio = growth rate ×100%                           

 A positive growth rate indicates that the population is increasing, while a negative 

growth ratio indicates the population decreasing. A growth ratio of zero indicates that 

there were the same number of people at the two times is net difference between 

births, deaths and migration is zero. 

(C) Excessive Growth and Decline  

Population exceeding the carrying capacity of an area or environment is called 

overpopulation. It may be caused by growth in population or by reduction in capacity. 

Spikes in human population can cause problems such as pollution traffic congestion, 

these might be resolved or worsened by technological and economic changes. 

Conversely, such areas may be considered “under populated” if the population is not 

large enough to maintain an economic system. 

4.1.1 INFERENCES FROM A DETERMINISTIC POPULATION DYNAMICS      

MODEL FOR BOWHEAD WHALES 

Definition of the Model 
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The population Dynamics model (PDM) that we consider was developed for 

Bowhead whales by Brejwick, Eberhandt and Braham (1984) and is a special case of 

the well known one sex age structured Leslie matrix population projection model 

(Lewis 1942, Leslie 1945, 1948). A fairly general form of this model is as follows. 

Let nxt be the no. of females aged x next birthday on January 1 of calendar year t, 

where t =0 is the initial year, then the model is specified by the equations. 

 

, 1

1

( )t t xt xt xt

x

n f n c






      (4.1.1)  

1, 1 ( ), 1,2,.............x t xt xt xtn S n c x                (4.1.2) 

where xtf  is the average number of female calves that survive to age 1 born in year t 

to a  female aged , xtx S  is the natural survival rate of females aged x in year t and xtc  is 

the no. of females aged ‘x’ killed by hunting in year ‘t’.  

This can be written in the matrix form as  

1 ( )t t t tN A N C                                              (4.1.3) 

Where 1 2( , ,.....)T

t t tN n n  , 1 2( , ,.....)T

t t tC c c  and ( : , 1,2,.....)t txyA A x y   is a doubly 

infinite square matrix defined by 

1

1

0

yt

txy yt

f if x

A s if x y

otherwise




  


    (4.1.4) 

As it stands the model has an infinite number of parameters, and Brejwick  

et.al.(1984) proposed the following restrictions for the bowhead whale case. 

Mortality: It is assumed that an immature survival rate, s0 prevails from age 1 to age’ 

a’ and that a mature (adult) survival rate applies from age a+1 onwards. To 

approximate senescence, it is assumed that all individuals aged w at time t die before 

time t+1. 

Mortality is assumed to be constant over time and in particular to involve no density 

dependence so that Sxt does not depend on t. Thus we have  
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0 1,.....,
1,......, 1

0
xt

s if x a
S s if x a w

x w


   



                               (4.1.5) 

Calf mortality is accounted for in the specification of fertility. 

Fertility :  Fertility is assumed to be constant with respect to age between at sexual 

mortality, m and age w-1 . It is assumed to be density dependent with a functional 

form corresponding to a modified logistic growth curve. First parturition is assumed 

to occur one year after age at sexual maturity this yields 

 

 

 
2

0 max 0

0

0

1 1,........, 1txt
t

x w

pf
f f f f x m w

p


                 

         (4.1.6) 

 where Pt is the female population size at the beginning of year t, maxf  is the maximum 

fertility, attained when the stock is near extinction, and z is the density dependence 

Parameter. Assuming that the population was in equilibrium at t = 0, before the start 

of Commercial whaling, yields a value for 0f  by solving the matrix 

equation 0 0 0A N N , namely 

   1

0 0(1 ) / / m wf S S S S S
    

 
                                (4.1.7) 

one estimate of tf  note that fxt is the product of the no. of female calves per mature 

female with the calf survival rate. We have no information which would enable us to 

separate fertility from calf survival. By including calving rate and Calf survival in a 

single term we acknowledge that density dependence may occur through changes in 

reproductive rate changes in first year survival or both. 

Hunting Mortality: The length of whales killed in the past three decades suggests 

that the recent subsistence harvest has predominately selected immature whales. 

Historically, the Commercial catch was probably biased towards larger, mature 

animals. 
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With these assumptions, the original model of Brejwick et al(1984) first divides the 

catch into two shares : for immature whales and one for mature whales. It then 

distributes each share among its corresponding age classes in proportion to the 

relative abundance of each class at the beginning of the year. With this distribution of 

the annual catch, it is possible to obtain negative age class counts without population 

extinction. We have modified the original model so that the number removed from 

each age. Class is never more than the current class size and what remains of the 

mature and immature catch shares is distributed proportionally as before but among 

empty age classes. 

The model requires values of the eight input parameters 0 max 0, , , , , ,s s a w m f z and p  as 

well as hunting mortality by year. Given these, it outputs a full age distribution of the 

female population for each year. It is assumed that the sex ratio is 1:1, so doubling 

this gives the total population. 

 

4.1.2 YIELD QUANTITIES AND THEIR RELATIONSHIP TO THE MODEL 

 

Several quantities used by the IWC (International Whaling Commission) for making 

policy decisions are related to the inputs and outputs of this PDM (Allen 1976, Cooke 

1987, Butterworth and Best 1990). One is maximum sustainable yield (MSY). Once 

an unexploited stock of size P0 begins to be exploited, it can sustain indefinitely  any 

level of catch less than MSY. The MSY level (MSYL) is the lowest population level 

at which MSY is attained, expressed as a proportion of P0. Under the assumption of 

density dependence in reproductive rate and/ or Calf survival the population increases 

at a higher rate when it has been reduced below P0 than when it is at or near its 

carrying capacity and therefore prevented by environmental limitations from 

increasing. Thus MSYL is less than one; it has often been assumed to 0.6 by the SC 

(Scientific Committee). 

For protected species like the bowhead; replacement Yield (RY) is a key management 

concept. RY is the catch from the recruited stock which, if taken, would leave the 
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recruited population at the same level at the beginning of the next season (IWC, 

1988). For Bowheads we assume that the recruited stock consists of all whales aged at 

least one year. The maximum sustainable yield rate (MSYR) is defined as RY at 

MYSL, expressed as a proportion of the population at MSYL. We define MSYL and 

MSYR in terms of the total population aged 1 or above as proposed by Butterworth 

and Punt (1992). 

Relationship between the model parameters and MSYL and MSYR are included by 

the Characteristic equation of the Leslie matrix and by the density dependence 

equation in (4.1.6). 

The Characteristic equation of the Leslie matrix, tA  is  

 
11

0 1 / 0
w mm m ms s s s   
       

 
                               (4.1.8)                        

where λ is the Eigen value or population multiplier  So that 1t tN N  t by (4.1.3) 

(Brejwick et al 1984). 

If the time t is such that 0/tp p = MSYL  and 0 , , , , ,s s a w m and MSYR  are known, Then 

can find the fertility rate at MSYL, MYSLf  by selecting  λ = 1+MSYR and solving for 

tf  in equation (4.1.8). Similarly, 0f  the relatively rate of a Stable Unexploited stock  

can be found by setting λ = 1 in equation (4.1.8). The only remaining unknown 

quantities in equation (4.1.6) an maxf  and Z as given maxf , we can solve equation 

(4.1.6) to the  corresponding value of Z. Note that, by definition maxf ≥ max( 0f , MSYLf ) 

 

4.2 POPULATION AND ECONOMIC GROWTH 

 

Analysis of economic growth may treat population growth as an independent variable, 

as endogenous variable, or as an instrument to be altered according to economic and 

social criteria. All these approaches except one will be reviewed. The subject of 

population and optimal economic growth more appropriately precedes the discussion 

of optimal population control. 
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The descriptive neoclassical growth models is so well known , that ist need be dealt 

with only briefly. Many of its properties are dependent on the fact that the 

proportional rate of growth of population is assumed constant. As was seen in provide 

the evidence for there being some simple set of economic determinants of population 

growth does not seem strong. fertility in particular would appear to be only weakly 

associated with economic variable, so far as mortality is concerned , whilst Adelman’s 

study did not show a relationship with income per capita, it is also true that for 

underdeveloped economics there is evidence that relations inexpensive public health 

programs are a much more significant influence . Nevertheless, the idea tht the 

minimum requirements of subsistence must limit population endogenous in a variety 

of ways and the result models some items lead to surprising conclusions. 

The models presented are described in some detail, and a brief appraisal of their 

results is given. 

 

 

 

4.2.1 THE DESCRIPTIVE NEOCLASSICAL GROWTH MODEL 

Suppose population grows at the constant percentage rate, n, if it has been growing at 

this rate for sometime the ration between those of workforce age and dependents may 

be used interchangeably without confusion. Output is produced by two inputs capital 

(K) and Labor (N) under conditions of constant returns to scale, so that output per 

head may be related to capital per head (K) by 

                                                           2( ),y f k f c   

                                                             1 0, 0f for all k                                      (4.2.1) 

Further assumption (which ensures unique results) is that  f  Is strictly concave. 

Assume that capital depreciates exponentially at the rate . if all saving is invested 

and if saving is a constant proportion of income(S) . it follows that 

( )
dk

I k sf k N k
dt

        (4.2.2) 
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Where     is the rate of depreciation of capital? The proportional rate of change in the 

capital-labour ratio is, by definition 

1 1 1
. . .

dk dk dk

dt k dt k dt N
     (4.2.3) 

So that using (4.2.2) and the assumed constancy of the population growth rate(n) 

( ) ( )
dk

sf k n k
dt

       (4.2.4) 

It is not difficult to make father assumptions to ensure the existence of a positive 

capital labour ratio(k) to which the system would converge  it may be deduced that in 

long-run equilibrium, capital and output both grow at the same rate as labour (n) but 

that raising the saving ration raises the equilibrium level of output per head. 

Technical progress of Harrods-neutral type may easily be added to the model. If it 

occurs at a constant proportional rate, output per head will rise “forever” at a constant 

rare. In essence, the efficiency of the labour force continually improves. Other 

assumptions about technical progress considerably alter the conclusions, except for 

special cases. 

Leaving technical progress aside, what part does population growth play in this 

mode? Being an exogenous variable it is likely to be of considerable importance. 

Indeed the equilibrium rate of growth of capital and of output are the same as the 

population growth rate. There is nothing to prevent population growing forever at the 

given rate.  Of course, the assumption of constant returns to scale to capital and labour 

is essential reason for this. 

 

If a choice is considered amongst various constants but non-negative population 

growth rate if is easily seen that the highest output per head is achieved with the 

stationary population (n=0) even higher levels of output per head could be achieved 

by Makin the growth rate negative, but the implications of the continuity assumption 

when applied to the population variable are not easy to accept. Population could 

decline forever at a constant proportional rate only if people ( or their labour) were 



 

Statistical Growth Models 

@Sahasra Publications                                                                                                                       86 

 

perfectly divisible the fact that scale does not matter in the system leads to the result 

that whatever the level of population when that variable is stationary the equilibrium 

level of output per head would be the same. The absolute sixe of population plays no 

essential part in determining the results of this model. 

The originators of this approach were, of course, aware of this sort of implication of 

their models, and it is true that for some purpose it needed not be a serious limitation. 

In the sprint of the 1950’s and 1960’s restrictions applicable to a continued growth of 

population may have seemed relevant only to the distinct future. Further, by assuming 

that population growth was independent of economic considerations it may be that 

they were recognizing the greater independence with respect to child-bearing and the 

advances in medical care which have become available. Yet there were under 

developed counties where there seemed to be conflict between population growth and 

economic welfare, and casual observation of the real world would suggest that the 

time must come when the same applied to developed countries. For these situations 

the neoclassical growth model was not relevant. 

 

4.2.2 ENDOGENOUS POPULATION GROWTH 

 

A model which is close to tha5 Ricardo has been studied by Niehans(1963). Using a 

cob-douglass production function,  

; , (0,1), 1;Y K N            (4.2.5) 

he assumes that noth laour and capital growth rate relate to their respective marginal 

products so that 

1
; , 0, constant;m m

dN Y
p w w p

dt N N

 
   

 
 (4.2.6) 

 

1
; , 0, constant;m m

dK Y
s r r p

dt K K

 
   

 
  (4.2.7) 
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mw and 
mr  are the marginal products at which growth of the respective factor becomes 

zero. this Niehans calls” two-class model” although really it must involve a third class 

holding  rights to a fixed factor when it assumed that there are decreasing returns to 

scale from (4.2.5) 

Y Y

N N






      (4.2.8) 

Y Y

K K






      (4.2.9) 

To analyze this model it is useful to plot the curves for zer population and capital 

growth given by equating each of (4.2.6) and (4.2.7) to zero.  

Population and capital follow the arrows shown in the diagram towards the stationary 

state 
_ _

,N K
 
 
 

 at which point the return to labour and capital will be at minimum levels. 

The constant and increasing returns to scale case do not necessarily lead to such a 

situation as sustained growth may be possible. 

.

.
K Y

s
K K
 .      (4.2.10) 

Further from (4.2.1) 

. . . .

.
Y K N Y N

s
Y K N K N

       .   (4.2.11) 

Now swan assumes an extreme form of the Malthusian hypothesis namely that 

population grows at such a rate that output per head remains constant this means that 

. .

N Y

N Y
       (4.2.12) 

Combining (4.2.11) and (4.2.12) 

. .

1

Y N Y
s

Y N K





 
   

 
     (4.2.13) 

He then plots (4.2.10), (4.2.12) and (4.2.13) against the output-capital ratio to obtain 

the construction in (4.2.3). 
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Capital gains faster than labour for any positive Y/K. So that the growth rates of 

population and Output fall along the ‘Recondian Line’. It does not however, follow 

that the system approaches a stationary state. To see this note that a feature of the 

system to the output per head is constant or some level. Say
_

y .  From (4.2.5) it 

follows that  

1
1_

K y N







       (4.2.101) 

Which, because 1    

Now observe from (4.2.10) that capital continues to gram unless K  and  N zero. As 

both are initially positive and neither declines capital continues to grow down the 

Recondian Line or up the iso-productivity curve and can therefore exceed any bound. 

Population also grows along the parabola and also would exceed and bound. There is 

no stationary state for the system as it stands. 

However, the model may be easily adapted so that a stationary state must exist. It 

capital is supposed to determine exponentially (4.2.10) becomes. 

.

,
K Y

s
K K

         (4.2.14) 

And it is clear that rare so growth of capital is zero if  

,
Y

K s


        (4.2.15) 

Or using 4.3.5 

1

1K N
s

 






 
  
 

      (4.2.16) 

The output capital ratio converges to 
s


 . As N and K increases along 

_

y  locus the 

output-capital ratio is falling and the system approaches the stationary state 

characterized by 
_ _

,N K
 
 
 
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Without exponential depreciation it was possible for the capita-labour ratio to grow 

without limit at a rate sufficient to offset the adverse effects of increasing scale the 

rise in the capital labour ratio means a rise in the capital-output ratio, so that a 

situation can be approached in which capital in sufficiently large in comparison with 

output that the saving out of output (sY) is just sufficient to offset the depreciation 

capital ( )K . 

Both Enke[1963]  and Wiehans [1963] have produced models which are similar to 

that Swan by contrast with his two-class model, Niehans one-class model does not 

relate a factor’s growth to its earning. Istead both capital and Labour growth depend 

on output per head. Whist the seems reasonable for labout in classless economy; I 

cannot see why classless citizens should accumulate. Capital in way independent of 

its rate of return, unless output head is very low. 

By contrast with Swan’s model Niehans and Enke allow for the negative investment, 

and hence it would seem for depreciation of capital. Pespite this assumption Niehans 

comes to conclusion that theme one situation in which ‘Capital and population will 

never cease to grow, domination returns not withstanding (1963 p.362). 

As in his earlier model Niehans again uses a Cobb-Douglas production function with 

diminishing returns to scale to capital and labour. The behavior  of population and 

capital respectively are assumed to be given by 

.

; , constant,L L

Y
N p m N p m

N

 
  

 
    (4.2.17) 

.

; , constant,K K

Y
K s m N s m

N

 
  

 
    (4.2.18) 

Niehans Calls (4.2.10) nothing but an old fashioned Keynesian savings function [1963 

P.358], but it is clearly more than that is has implications for capital depreciation as 

well as for saving. When output per head is below some level Km , Saving and new 

investment is insufficient to offset  depreciation, and the capital stock declines 

without enamoring what rationable them may be for this function, its would be noted 

that if K Lm m  depreciation does not set a limit to the scale of the economy. The point 
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which is relevant for the present discussion is that whilst exponential depreciation 

must result in bounds to growth these sorts of economies, it is possible to design and 

perhaps to justify depreciation assumption which does not have this property. 

Thus leaving depreciation aside if diminishing returns no scale is no enough to 

embody the essentials a bounded environment; what alternative approaches will 

continue this idea? The answer would seem to include the shape of the iso-

output/head curves. It was seen that the swan model grows without bounds because 

both K and N approach infinity as t   In general, the slope of an iso-productivity 

curve is given by 

( ( / ))
[( / ) .]

( )

N

K

F F NdK
Y N const

dN F

 
     (4.2.19) 

Where F is a twice differentiable production function with arguments N and K , and 

NF  and KF  are the  marginal product of labour and capital, respectively. 

 If the slope becomes infinite for some finite
_ _

,N K
 
 
 

, that is, 

   
_ _ _ _ _ _ _ _ _

, 0, , , / , ,K NF N K withF N K F N K N for some N K
       

        
       

 (4.2.20) 

the size of the population is bounded above condition (4.2.10) Simply means that 

output can’t be further increased by applying more capital, so that additional labour 

must reduce output per head surely it is reasonable to assume that with given 

technology in a finite environment there must be some scale of operation and input 

combinations at which further capital is no longer productive. If this were not so, the 

ridiculous extreme could be reached at which the mass of all capital equipment 

exceeded that of the universe, but an extra unit of capital could still produce further 

output indeed, taking exrenalities into negative account a negative managerial 

production of capital is not unreasonable  

Using Swan’s population assumption the economy, moves upward along the iso-

population curves with population bounded above by N


. Capital is not bounded in this 

process, but if investment behavior were made to depend in some way on the 
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managerial production of capital it is reasonable to assume that accumulation would 

stop at or before the point at which the marginal product of capital was zero. 

Suppose a production function linear and homogenous in the three factors labour 

capital and land, with a fixed of land. It is required to investigate the following 

problem. It is possible for population and the capital stock to grow forever in such a 

regime without the marginal productivity of capital becoming zero the growth rate of 

the output per head (y) will be given by 

.
. . .

/ ( / ) ( )( / )K L Ky y K K N N         (4.2.21) 

Where K  and L  Are the production classified of capital and labour respectively, and 

will be assumed non-negative. From 21 If output per head is constant. 

. .
.

/ 1 L

K

N N
K K

N N





 
   
 

,     (4.2.22) 

So that if population grows with a constant y, both capital and capital-labour ratio(k) 

must also rise more over the land labour ratio (l) Must fall, what then happens to the 

marginal product of capital ( )kf  writing the production function in the form. 

 

( , )Y Nf k l        (4.2.23) 

It follows that 

k
kk kl

df dl
f f

dk dk
        (4.2.24) 

It has been deduced that 0
dl

dk
 , and  if diminishing returns to a single factor is 

assumed, there 0kkf   However, no assumption has yet been made on the sign of klf  

so that it is possible that the marginal product of capital could remain constant or even 

rise. If it were assumed that  klf  was positive this would e sufficient to ensure that the 

marginal product of capital fell during the process. 
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A reasonable model which has apparently not been considerable would seem to be 

one which related capital growth to its return and population growth to income per 

head. Thus, using earlier notation, 

                                         
.

K I K   

 ( ) , ; 0, .
0, ,

k k

k

F r K F r const
I

F r
   




   (4.2.25) 

.

(( / ) ) , 0, .LN Y N m N const        (4.2.26) 

It is not difficult, using a decreasing returns to scale Cobb-Douglas production 

function, to show that this model approaches a  unique stationary state from any initial 

position with N and K Both positive. 

Output is assumed to be produced under conditions of constant returns to scale to 

capital and labour. Capital accumulation per head of population is explained by 

1

1

( ); , 0
; .

dK b y x y y b
C y yN

   
 

 
    (4.2.27) 

Above 1 1( / )Y N y  saving per head is increasing function of income per head. 

The percentage rate of growth of population is also related to output per head. up to 

1y   the death rate is assumed to be a decreasing function of output per head whilst 

above that level the rate of growth of population is assumed constant. 

The working of the system can be illustrated readily if a Cobb-Douglas production 

function is assumed. It may be shown that for such a function 

1

Y Y

K K







 
  
 

       (4.2.28) 

and 

 

1

N Y

K N





 
  
 

       (4.2.29) 
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Using these results the rate of growth of capital as a function of output per head is 

given by 

1
1

1

1

1

; ;

;

Y Y
b X y y

dK N N

K
Y

C y y
N











                   
  
   

 

   (4.2.30) 

substituting in 4.2.11 the rate of growth of income for 1y y  is 

1
1

(1 )
dY Y Y dN

b X
Y N N N




 


    

       
     

   (4.2.31) 

and for 1y y  

1

(1 )
dY Y dN

C
Y N N



 



 
    

 
    (4.2.32) 

Thus as output per head rises from a low level the rate of growth of output rises, but 

approaches (1 )
dN

N




 
  

 
 as y  . 

 

4.3 POPULATION GROWTH AND ASSET PRICES 

 

There are many authors examine the relationship between a population’s age 

distribution and asset prices. Mankiw and Weil [1989] argue that the maturing of the 

baby boomers during the 1970’s accelerated the rate of household formation, which in 

turn, increased the demand for housing and its price. Bakshiand Chen [1994] 

incorporate Mankiw and Weil’s findings into a “life-cycle investment hypothesis” 

which argues that individuals change their allocations of wealth as they age so an 

aging population alters aggregate demand for assets and thus their prices. Yoo [1994], 

motivated by a similar intuition, finds that the real return to U.S. T-bills is negatively 

correlated with the size of the age group that has the highest increment to its wealth. 
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Some of the authors show that an individual’s demand for an asset varies with age. 

They then argue that because aggregate demand is merely the sum of individual 

demands, changes in a population’s age distribution affects the aggregate demand for 

that asset and thus affect the price of the asset. 

Although all of them share a common intuition, they are mostly empirical. This 

section examines the theoretical underpinnings of the relationship between a 

population’s age distribution and asset prices. It presents a general equilibrium model 

that aggregates individual’s optimizing behavior to derive equilibrium asset prices. 

The theoretical relationships between the two variables are shown by simulations 

based on the model. 

The model suggests four conclusions about the relationship between asset prices and a 

population’s age distribution. First, changes in a population’s age distribution affect 

asset prices, as noted by the empirical literature. Second, although fluctuations in the 

population growth rate like the US post-war baby boom affect asset prices, such 

changes generate low frequency movements in asset prices. Third, the treatment of 

expectations matter; a small response of individuals to changes in asset prices has 

large implications for the path of asset prices. Finally, incorporating a supply of assets 

by interpreting an asset as a claim on physical capital diminishes the magnitude of the 

relationship but does not change the sign or timing of the relationship between a 

population’s age distribution and asset prices. 

 

4.3.1 A MODEL OF AGE DISTRIBUTION AND ASSET PRICES 

 

The intuition that explains the potential relationship between a population’s age 

distribution and asset prices is rather simple. First, it assumes that an individual’s 

demand for an asset varies with age. This premise underlies all three empirical papers 

cited and it is consistent with life-cycle behavior if an individual saves in assets, 

rather than saves storable consumption goods. Given the assumption, variations in a 

population’s age distribution will alter the aggregate demand for that asset by 
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changing the distribution of asset holders. So, a young population has many savers 

which generate a high total demand for assets, but an old population has many 

dissevers so total demand for assets is low. It is this variation in aggregate demand for 

an asset that produces a relationship between a population’s age distribution and asset 

prices. 

A Simple Model 

Let tD  be the aggregate quantity of consumption goods invested in an asset in period 

t. Also, let tS  be the number of shares of that asset outstanding in the economy. Then 

in equilibrium, the price of the asset tP  adjusts so that, 

t t tD PS        (4.3.1) 

If an agent lives for dT    periods and saves  ,t sa   when s years old in period t,and ,t sN  

is the number of individuals  s years old, then the aggregate demand for the asset is 

, ,

1

dT

t t s t s

s

D N a


       (4.3.2) 

Combining the two equations shows how changes in a population’s age distribution 

affect asset prices in a manner suggested by the empirical literature, 

, ,

1

dT

t s t s

s
t

t

N a

P
S




      (4.3.3) 

An additional individual aged s affects asset prices by an amount proportional to ,t sa . 

So variations in a population’s age distribution affect asset prices as long as age is a 

related to an individual’s demand for the asset. 

A pricing equation very similar to equation (4.3.3) can also be derived by combining 

an individual’s budget constraint and an aggregate resource constraint for an 

endowment economy. The individual’s budget constraint is, 

, 1, 1 ,

1

t
t s t s s t s

t

P
a a e c

P
 



        (4.3.4) 

Where se the endowment of consumption is good received by an individual aged s and 
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,t sc  is the consumption of that agent in period t. If the endowment goods are non-

storable, then in equilibrium, total consumption equals total endowment each period, 

, , ,

1 1

d dT T

t s t s t s s

s s

N c N e
 

  .      (4.3.5) 

Substituting (4.3.4) into (4.3.5) yields 

, ,

1
1

1, 1,

1

d

d

T

t s t s

s
t tT

t s t s

s

N a

P P

N a




 







.      (4.3.6) 

The two pricing equations (4.3.3) and (4.3.6) are equal if 

1, 1,

1

1

dT

t s t s

s
t

t

N a

S
P

 








.       

Although the derivations of the asset pricing equations are fairly simple, both 

equations capture the intuition and the methodology of the empirical literature. The 

empirical findings start with a cross- sectional estimate of an individual’s demand for 

an asset and aggregate using the population’s age distribution to determine how 

demographic factors affect asset prices. 

 

4.3.2 MODIFYING THE MODEL’S ASSUMPTIONS  

 

The basic model presented in the previous section and make two strong assumptions 

when using equation (4.3.3) to show the relationship between the age distribution and 

asset prices. This section examines the impact of relaxing the assumptions about 

expectations and supply of assets. 

Expectations 

Estimating and simulating (4.3.6) in two steps assumes that an individual’s demand 

for an asset does not respond to its price, a strong assumption given that saving is 

implicitly a forward-looking behavior. This section presents a simulation that replaces 

the static expectations assumption with a perfect foresight one. Equation (4.3.6) still 
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captures the relationship between asset prices and age distributions but future asset 

prices now affect ,t sa . 

The simulation strategy is similar to that of the previous section. The population 

growth rates generate the ,t sN ’s and supplies the ,t sa ’s for the asset pricing equation 

but unlike the previous simulation, individuals now consider the future path of asset 

prices when making their saving decisions. Incorporating forward-looking behavior 

generates a perfect foresight path for the price of an asset. 

Computationally, I use an iterative technique to simulate a perfect foresight path for 

asset prices. Agents in each iteration use the path of prices calculated by the previous 

iteration as the future path of asset prices. The iterations continue until each period’s 

price changes by a negligible amount. The system is closed by assuming that asset 

prices return to their steady state growth rate within a finite horizon. Auerbach and 

Kotlikoff use this technique to simulate their model. 

Changing the assumption about individual’s expectations has a noticeable effect on 

the response of asset prices to a baby boom. The model under either assumption about 

expectations shows that demographic shocks like a baby boom affects asset prices 

albeit with different timing and magnitudes.  

Assumptions about the responsiveness of ,t sa to changes in asset prices are responsible 

for the differences between the responses of asset prices to a baby boom.  

Supply of Assets 

The model specified above shows how the demand for an asset changes with 

demographic changes but it assumes that the supply of the asset is fixed. This section 

addresses that problem by incorporating a production function into the economy so 

that assets now represent claims to physical capital. 

An individual still maximizes her utility function but wages replace the age-dependent 

endowments in her budget constraint. So, 

, 1, 1 ,

1

t
t s t s s t t s

t

P
a a e w c

P
 



   ,     (4.3.7) 
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Where 
se now represents an age-dependent labor productivity parameter and  

tw  is the 

wage paid per effective unit of labor. 

A Cobb-Douglas production function represents the productive capacity of the 

economy 

1

t t tY K L         (4.3.8) 

Where tY  is the net output of the economy, 

55

1, 1,

1

t t s t s

s

K N a 



 ,      (4.3.9) 

And 

45

,

1

t t s s

s

L N e


        (4.3.10) 

The factors of production receive their marginal product, so that 

1

1

t
t

t

P
k

P

 



        (4.3.11) 

And  

(1 )t tw k  ,      (4.3.1) 

 

where  tk  is the capital-labor ratio in  t 

The above equations replace (4.3.5) and (4.3.6) in determining the equilibrium asset 

prices of the economy. Otherwise the simulation strategy is similar to that of the 

endowment economy. As before, the simulation uses an iterative technique to 

determine the perfect foresight path of asset prices. 

 

4.4 DENSITY-INDEPENDENT POPULATION GROWTH   

 

Density-independent growth models offer an extremely simple perspective on 

changes in population size by assuming away many potential complications.  For 

example, two sets of counteracting processes affect population size; birth and 
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immigration increase populations while death and emigration decrease them.  To 

simplify, assume that (a) immigration and emigration balance, leaving birth and death 

as the only determinants of population density.  Let's also assume that (b) all 

individuals are identical (especially with respect to their probabilities of dying or 

producing offspring), (c) the population consists entirely of parthenogenetic females, 

so that we can ignore complications associated with mating, and (d) environmental 

resources are infinite, so that the only factors affecting population size are the 

organisms' intrinsic birth and death rates.  These assumptions allow a simplistic model 

of population growth, and it is instructive to present the model in two formats for 

different kinds of life histories.  

 

4.4.1 EXPONENTIAL GROWTH WITH CONTINUOUS BREEDING  

 

First we will consider an organism like Homo sapiens or the bacteria in a culture 

flask, with continuous breeding and overlapping generations.  All ages will be present 

simultaneously, and population size will change steadily in small increments with the 

birth and death of individuals at any time.  This continuous population growth is best 

described by a differential equation, with instantaneous rates defined over infinitely 

small time intervals.   

 If:   N  = population size  

 b  = instantaneous birth rate per female  

d  = instantaneous death rate per female  

then population growth is given as:  

( )
dN

b d N
dt

        (4.4.1) 

If we collect the per capita birth and death rates in a single parameter  r b d     

called the intrinsic rate of increase or exponential growth rate, then:  

dN
rN

dt
        (4.4.2) 
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This expression states that population growth is proportional to N and the 

instantaneous growth rate r.  When r = 0, birth and death rates balance, individuals 

just manage to replace themselves, and population size remains constant. When r <0, 

the population shrinks toward extinction, and when r > 0, it grows.  

We integrate the differential form of this continuous growth model to project future 

population sizes:  

( ) (0) rtN t N e       (4.4.3) 

Although r is an instantaneous rate, its numerical value is only defined over a finite 

interval.  If this rate remains constant, then we can predict future population size,  

N (t) from a knowledge of the constant growth rate (r), the present population size, N 

(0), and the time over which growth occurs (t).  

 

4.4.2 GEOMETRIC GROWTH WITH DISCRETE GENERATIONS  

 

Now we consider a density-independent growth model that is more appropriate for 

many plants, insects, mammals, and other organisms that reproduce seasonally.  

Individuals in such a population comprise a series of  cohorts  whose members are at 

the same developmental stage.  Assume that an interval begins with the appearance of 

newborns, and that if individuals survive long enough, they produce another cohort of 

offspring at the beginning of the next interval.  Parents may all die before the 

offspring are born (like annual plants), or they may survive to reproduce again so that 

generations are partially overlapping (like many mammals).  In either case youngsters 

appear in nearly synchronous groups separated by intervals without recruitment.  

 This  discrete  population growth is best described by a finite difference equation.  

 

If:   tN   = population size at time t  

b  = births per female per interval  

 p  = probability of surviving the interval, then:  
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1 ( )t t t tN pN pbN p pb N         (4.4.4) 

 

Redefining the collective term with birth and death rates as a single parameter  

 = ( p +pb ),  which gives the number of survivors plus their progeny,  

 

1 2 0( ) t

t t tN N N N            (4.4.5) 

 

  is the  geometric growth factor , or  per capita  change in population size over a 

discrete interval,  t .  If  1  , then individuals just manage to replace themselves and 

population size remains constant.  If   < 1,  the population shrinks toward extinction, 

and if   > 1, it grows larger.  As long as remains constant, we can predict future 

population sizes from the growth rate (  ), the present population size ( 0N   ), and the 

interval over which growth occurs (t), using the equation  

 

0

t

tN N         (4.4.6) 

 

4.5 DENSITY-DEPENDENT POPULATION GROWTH  

 

 This section simulates density-dependent population growth, assuming a linear 

negative  feedback of population size on  per capita  growth.  It requires specification 

of a starting population size N(0), a maximum sustainable population size or 

environmental carrying capacity  K , a  per capita  intrinsic growth rate  r , and 

(optionally) a feedback lag   .  The program includes continuous, lagged continuous 

and discrete simulations.  

 

  Density-dependent models assume that population size affects per capita 

growth.  While the feedback of density on growth can take many forms, the logistic 
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model imposes a negative linear   feedback.  Note that if K is the environmental 

carrying capacity (quantified in terms of individuals, N), then K – N gives a measure 

of the unused carrying capacity, and (K-N)/K gives the fraction of carrying capacity 

still remaining.  Thus  

dN K N
rN

dt K

 
  

 
       (4.5.1) 

 

If  N  is near zero, the carrying capacity is largely unused, and 
dN

Ndt
   is near  r .If   

N=K , the environment is totally used or occupied, and 0
dN

Ndt
    In this continuous, 

differential equation model,  r  is an instantaneous rate, but its numerical value is 

defined over a finite time period.  

To project a time trajectory of logistic population growth, we need to integrate the 

differential equation from time (0) to time ( t ).  

( )

( )
(0)

1
(0)

rt

K
N t

K N
e

K




 

  
 

      (4.5.2) 

A plot of  N(t) with respect to time gives a sigmoid (S-shaped) trajectory, where 

growth is nearly exponential when  N  is near zero, and slows to equilibrium at  N=K .  

When initial population size exceeds the carrying capacity, numbers fall in an 

asymptotic approach toward K.   

Sometimes the feedback of density on per capita growth rate is not instantaneous.  For  

example, the effect of malnutrition on population growth might not be strongly 

evident before malnourished juveniles reach reproductive age.  We can simulate this 

process by assuming that growth rates are affected by population size in some 

previous time period.  Thus  

( )
( ) 1

dN N t
rN t

dt K

 
  

 
     (4.5.3) 

where    is a time lag.  There is no definite integral for this equation, so we project 
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time trajectories by summing instantaneous changes in population size via numerical 

integration.  Because the lag is delayed by an amount   , a growing population may 

reach and overshoot the carrying capacity before the negative feedback term causes 

the population to stop growing or decline.  The resulting oscillation may damp to a 

stable equilibrium or continue indefinitely as a limit cycle.  

A population with discrete generations or cohorts cannot adjust instantaneously to 

changes  in density-dependent feedback, because births occur only once in each 

generation or cohort interval.  There is an implicit lag associated with the period of 

discrete population growth increments.  With the lagged logistic model of the 

previous section, lag time, t, could vary in length; but with a discrete logistic model it 

is constant, fixed by the interval of discrete time steps.  As a result, r and K alone 

determine the dynamics.  When r is small, the population may not grow fast enough 

to overshoot carrying capacity within the lag time of a single cohort interval; but as     

r increases, sustained oscillations are more likely.  Several approaches have been used 

to formulate difference equations analogous to the continuous logistic equation, but 

they yield similar results.   

The version implemented is:  

1

1

tN
r

K

t tN N e

 
 

 
         (4.5.4) 

With a small population-growth rate,  r , this discrete model gives a sigmoid approach 

to equilibrium, just like continuous and lagged logistic models.  With increasing  r  

values, discrete logistic dynamics show damped oscillation; then 2-point cycles of 

constant period and amplitude;  and then cycles that include 4 points, 8 points, 16 

points, etc., before repeating.  Finally, very large r  values cause population size to 

fluctuate in a way that is extremely sensitive to initial conditions, and never settles 

into a precisely repeating cycle, a regime that mathematicians term “chaotic.”  

 

4.6 AGE-STRUCTURED POPULATION GROWTH  
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Youngsters and oldsters give birth and die at different rates.  To keep track of these 

differences and their effect on population growth, biologists divide an organism’s life 

into a series of discrete intervals, each representing a cohort of individuals that are 

about the same age and have similar expectations of survival and fertility.  By listing 

xS  , the number of surviving individuals in each cohort by age,  x , we can specify the 

composition of an age-structured population.  We can also tabulate age-specific 

changes of fertility and survival in a life table, or   x xl m  schedule.  The first 

component, xl  , is the average probability of survival from birth to age  x .  The 

second component, xm , is the average number of female offspring that a female can 

expect to acquire when she reaches  age  x .  With these life history parameters, we 

can then project population growth by cohort or with a weighted average of fertility 

and survival rates over all ages.  

 

This  section provides three different visual representations of a life history,  allowing 

students to see a life-table  or x xl m   schedule, a life-cycle graph of the age classes and 

provide the data to initiate a demographic projection in any of the three formats.  

There are output graphs showing changes in population size, population composition, 

the expectation of future progeny, and a tabular output illustrating the computations 

that  project population composition, based on the x xl m schedule, the initial xS   values, 

and assumptions about the timing of reproduction and population censuses.  

There are several ways of specifying the age-specific fertilities and probabilities of 

survival for a demographic projection.  Fertilities can be tabulated as the average 

number of offspring accruing to a female when she reaches age  x  (this is the xm  of 

an x xl m   schedule), or the number of progeny of an age  x  female that are expected to 

be alive after the next projection interval (this is the xf from the first row of a Leslie 

Matrix).  Survival probabilities can be specified over  x  projection steps from age 0 to 

age  x  (this is xl ) or a single projection step from ages  x -1 to  x , or  x  to  x +1 (this 
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is the  
xp  transition probabilities, or a population state vector listing 

xS , the number 

of survivors in each age class, with the Leslie projection matrix.  Students can 

compare views, and just below the diagonal of a Leslie Matrix).  The different styles 

of visual representation require converting and manipulating these survival and 

fertility parameters, and the exact details depend on assumptions about the timing of 

population censuses and reproduction of the organisms in question.  When 

reproduction occurs seasonally at discrete intervals and the population census comes 

immediately after reproduction, then   

1

x
x x x x

x

l
p and f p m

l 

       (4.6.1) 

If censuses are made immediately before reproduction, then newborn individuals must 

survive a full projection interval before they are tabulated in their first census, so  

1
1

x
x x x

x

l
p and f l m

l

       (4.6.2) 

Finally, when reproduction is continuous rather than pulsed in discrete seasons, the 

length of projection time steps is arbitrary, and probabilities of survival and 

reproduction are averages of the values at the beginning and end of each interval.  

1 11

1

1

2 2

x x x x x
x x

x x

l l m p ml
p and f

l l

 



    
    

   
   (4.6.3) 

 

Projecting a Constant  x xl m   Schedule  

 

Consider a hypothetical population with discrete reproduction, comprised at an initial 

post reproductive census only of  0S  newborn individuals.  At the next census, 1 0l S of 

those newborns will still be alive; they will have just passed age 1, each producing 1m  

newborn progeny of their own, so that the new population is comprised of two 

cohorts.  If xl  and xm values remain constant, this process can be projected 

indefinitely.  
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The first three columns in this table give x, 
xl  and

xm .  The shaded fourth column 

gives a hypothetical initial population, consisting in this case of 4 newborn 

individuals.  The projection of this population to subsequent time steps 1-5 is made 

for each succeeding time step by first tabulating the number of 1- and 2-step-old 

adults, and then adding the progeny they can expect on reaching each age  x .  The 

projection shows that if xl and 
xm remain unchanged, the ratio of successive 

population sizes  1t

t

N

N
   , often converges on a constant value, and the proportional 

representation of each age class then reaches a constant Stable Age Distribution.  

Thus, a population with a constant age-specific schedule of survival and reproduction 

may be started with any arbitrary composition, but will usually settle down to a 

constant growth rate,   , and a stable age distribution.  

It is also possible to project the constant growth of an age structured population with 

some simple weighted average rate estimates.  The Net Reproductive Rate 0R , gives 

the number of female progeny expected to accrue during the entire lifetime of an 

individual female.  It is calculated as  

0 x xR l m         (4.6.4) 

which is the sum of offspring produced in each age interval, weighted by the mother’s 

probability of surviving to that age.  The mean generation length or cohort generation 

time, cT , is estimated as  

0

x x x x

c

x x

xl m xl m
T

l m R
 
 


      (4.6.5) 

the weighted average of a female's ages when each of her progeny are born.  From 

these two averages, we can approximate population growth,     or r, as  

0 0ln

c c

R R
or r

T T
        (4.6.6) 

This approximation is fairly accurate for semelparous life histories (where organisms 

only breed once, like the Onchorhynchus  salmon of the North Pacific) or populations 
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that are not growing  significantly.  For iteroparous (multiple-brooding) life histories 

in growing populations, we determine r with any desired precision by successive 

approximation using the Lotka-Euler equation,  

1rx

x xe l m         (4.6.7) 

Matrix Projection 

This is represents population composition as a vector whose elements are xS  values, 

the numbers of individuals in each age class.  To project a subsequent composition, 

this vector is multiplied by a transformation matrix (the "Leslie Matrix"), which has 

age-specific fertility values, xf , in its first row, and probabilities of surviving from 

one age to the next,  xp , below the diagonal.  The product of this matrix 

multiplication is a new vector, specifying the xS   values of the population at the next 

succeeding census.  Students who need to review the basics of matrix multiplication.  

The Lotka-Euler equation is the characteristic equation of this projection matrix, and    

  is its dominant eigenvalue.  

1 1 2 3 1

2 1 2

3 2 3

1

( 1) ( )

( 1) 0 0 0 ( )

( 1) 0 0 0 ( )

( 1) 0 0 0 0 ( )

n

n n n

S t f f f f S t

S t p S t

S t p S t

S t p S t

    
    

    
     
    
    
        

  (4.6.8) 

Computational Notes  

Reproductive Value, xV , is a function of age.  This is the expected number of future 

female progeny for a female of age  x , relative to the expected future output of a 

newborn female, 0R  

rx
ry

x y y

y xx

e
V e l m

l






  
   
  

      (4.6.9) 

When students elect to initiate a demographic simulation by specifying elements of 

the Leslie Matrix and population state vector, it is necessary for our program to 

specify xl in terms of xp , and xm  in terms of  xf  and xp .  For continuously 
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reproducing organisms, I am not aware that these relations have been published 

previously.  The solution is  

1
1 1

1

0 0 1 1

4i x
x x

x i x x

i x x

f m
l p l and m

p p p

 
 



  

       (4.6.10) 

Any xm can then be found recursively, working backward from the first  xm  = 0.  

 

4.7 LOTKA-VOLTERRA COMPETITION  

 

Density-dependent growth models like the logistic equation simulate an intraspecific 

competitive process; resources become limiting as the population increases, and the 

per capita growth rate declines.  In this section, an additional term is added to the 

logistic to represent interspecific density-dependent effects, and a pair of the resulting 

expressions comprise the "Lotka-Volterra competition equations," which provide a 

simple and historically important vehicle for thinking about competitive interactions.  

In the Lotka-Volterra equations, densities of both species are subtracted from the 

carrying capacity to give a density-dependent feedback term, and the number of 

interspecific competitors is weighted by a term called the competition coefficient 

which varies with the species' similarity in resource requirements.  Thus  

 

1 1 1 2
1 1

1

( )dN K N N
r N

dt K

  
  

 
    (4.7.1) 

 

2 2 2 1
2 2

2

( )dN K N N
r N

dt K

  
  

 
    (4.7.2) 

 

where 1N  represents the density of species 1, 1K  is the environmental carrying 

capacity of species 1, and 1r  is its intrinsic rate of increase, and   is the competition 

coefficient, a proportionality constant defining the amount of 1K  used by every 
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individual of species 2.  In the second expression,   is an analogous coefficient 

weighting the effect of each species 1 individual on
2K . 

Although we have no closed form solution for these equations, we can still gain 

interesting insights about their dynamics near the equilibrium where 1 2 0
dN dN

dt dt
  . 

Trivial equilibria occur when r or N = 0; a more interesting case occurs when 

1 1 2N K N   and 2 2 1N K N  . 

These are the equations for straight lines in 2 1vsN N   coordinate space, the "Zero-Net-

Growth Isoclines" which specify density ratios where 1 0
dN

dt
  and 2 0

dN

dt
 , 

respectively. 
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CHAPTER - 5                        POPULATION PROJECT IN TECHNIQUES 

 

5.1 INTRODUCTION 

Population projection techniques are methods used to estimate the future size and 

composition of a population based on historical data, current demographics, and 

assumptions about future trends. These projections are valuable for a variety of 

purposes, including urban planning, resource allocation, and policy development. 

Several techniques are commonly employed for population projections: 

Arithmetic Growth: This basic method assumes a constant annual increase in 

population. It is calculated by adding a fixed number of individuals each year to the 

current population. While simple, it is generally not suitable for long-term projections, 

as it does not consider changes in growth rates. 

Geometric Growth: Geometric growth is similar to exponential growth, where the 

population increases by a fixed percentage each year. This model is more realistic 

than arithmetic growth and can be used for short- to medium-term projections. 

Exponential Growth: Exponential growth models assume that population growth 

occurs at a constant rate over time. It uses the formula N(t) = N0 * e^(rt), where N(t) 

is the projected population at time t, N0 is the current population, e is the base of the 

natural logarithm, r is the annual growth rate (expressed as a decimal), and t is the 

number of years into the future. 

Logistic Growth: Logistic growth accounts for resource limitations and assumes that 

population growth levels off as it approaches a carrying capacity (K). This model is 

suitable for situations where populations cannot continue growing indefinitely. 

Cohort Component Method: This method breaks down the population into cohorts 

or age groups and projects each cohort separately based on birth rates, death rates, and 

migration rates specific to each group. It provides detailed age-specific projections. 

Rate-Based Projections: These projections use vital rates (birth rates, death rates, 

and migration rates) to estimate future population sizes. They can incorporate various 

demographic factors and are often used in official population projections. 
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Survival Analysis: Survival analysis techniques, such as Kaplan-Meier estimates and 

Cox proportional hazards models, are used to project survival rates for specific 

populations, such as cancer patients or participants in clinical trials. 

Time Series Analysis: Time series methods, like autoregressive integrated moving 

average (ARIMA) models, use historical data to project future population trends, 

accounting for seasonality and temporal dependencies. 

Demographic Transition Models: These models describe the historical shifts in birth 

rates, death rates, and population growth that occur as societies move from high 

fertility and high mortality to low fertility and low mortality. They can be used to 

project future trends based on a country's stage of development. 

Agent-Based Modeling: Agent-based models simulate the behavior of individual 

agents (e.g., people) within a population and can project population dynamics based 

on agent interactions and rules governing their behavior. 

Probabilistic Projections: Instead of producing a single projection, probabilistic 

methods provide a range of possible future scenarios, each with its own likelihood. 

Monte Carlo simulations and Bayesian methods are used for probabilistic projections. 

Scenario Analysis: Scenario analysis involves developing multiple projection 

scenarios based on different assumptions about factors like birth rates, mortality, and 

migration. These scenarios can represent different policy or development options. 

Projection Software: Specialized software packages, such as the United Nations' 

World Population Prospects or the U.S. Census Bureau's Population Projections, are 

often used to perform complex population projections, incorporating various 

demographic and statistical methods 

.Effective population projection techniques depend on the availability of reliable 

demographic data, the understanding of current demographic trends, and the 

consideration of various future scenarios. Projections should also be periodically 

updated to account for changing circumstances and assumptions. 

 

5.2 FREJKA’S COMPONENT METHOD OF POPULATION PROJECTION 
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Frejka's component method of population projection is a demographic modeling 

technique used to project future population sizes and age structures by breaking down 

the projection process into its individual components, such as births, deaths, and 

migration. This method allows for a more detailed and nuanced understanding of how 

different demographic factors contribute to population changes over time. The method 

is named after its developer, demographer Tomas Frejka. 

The Frejka component method involves the following key components: 

Fertility Component: This component focuses on projecting future births based on 

assumptions about fertility rates. Demographers consider factors such as age-specific 

birth rates, total fertility rates (TFR), and changes in fertility behavior when making 

fertility projections. 

Mortality Component: The mortality component deals with projecting future deaths 

by considering age-specific death rates, life expectancy, and other mortality-related 

factors. Changes in mortality rates, such as improvements in healthcare or increases in 

life expectancy, are incorporated into mortality projections. 

Migration Component: Migration plays a significant role in population dynamics, 

especially in regions with significant international or internal migration. This 

component projects future migration patterns, including immigration, emigration, and 

net migration, based on historical data and assumptions about future migration trends. 

Age Structure Component: This component considers the current age distribution of 

the population and how it changes over time. It takes into account both the natural age 

distribution changes (births and deaths) and the age distribution effects of migration. 

Sex Ratio Component: Demographers may also consider changes in the sex ratio of 

the population when making projections. This involves projecting male and female 

populations separately and accounting for potential gender imbalances. 

The key steps in the Frejka component method of population projection typically 

involve the following: 
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Base Year Data: Start with reliable and up-to-date demographic data for a base year. 

This data includes population counts, age structure, fertility rates, mortality rates, and 

migration data. 

Projection Assumptions: Make assumptions about future trends in fertility, 

mortality, and migration. These assumptions can be based on historical trends, expert 

judgment, or specific policy scenarios. 

Projection Model: Develop a mathematical model that incorporates the component-

specific assumptions. This model calculates projected population sizes and age 

structures for future years. 

Validation: Validate the projection model by comparing projected results with 

historical data for previous years to assess the model's accuracy and reliability. 

Scenario Analysis: Consider different projection scenarios by varying assumptions 

about fertility, mortality, or migration to understand the range of possible population 

outcomes. 

Sensitivity Analysis: Conduct sensitivity analyses to assess how changes in 

assumptions about one component (e.g., fertility) affect overall population 

projections. 

Reporting and Communication: Present the projection results in a clear and 

understandable manner, often through tables, charts, and reports. Communicate the 

implications of the projections for policy planning and decision-making. 

The Frejka component method is a flexible and widely used approach in demography 

for population projection. It allows policymakers, researchers, and planners to gain 

insights into how different demographic factors contribute to population change and 

can inform strategic decisions related to healthcare, education, and social services. 

 

(A) ESTIMATING THE SURVIVORS OF THE PRESENT POPULATION 

AFTER t YEARS 

The first Component ‘Survivors of the present population’ of the population is given 

by  
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( ) ( ) ( )z t z t

n x t n x n xP P S

                        (5.2.1) 

( )

xto x nage group xto x nage group xto x nage group
population projection populationinthe survival rateat
afterr t years present year base year z year t

       
     

          

 

 

The survival rates can be obtained from life tables.  Generally, 5-year survival rates 

are used in population projections.  

i.e. 5 5 5

5

x
s x

x

L
S

L

                                        (5.2.2) 

 

(B) ESTIMATING THE NEW BIRTHS IN (0,t) PERIOD AND THEIR 

SURVIVORS AT PROJECTION YEAR t 

The estimated survivors of all the new births in (0,t) period recorded at tth year is 

given by  

2

1 0 0
x

n kn
x i

x t p x

x i x n

L
f

l








  

 
    

 
                                                     (5.2.3) 

 

Where 
xpf  =No. of females in the age group (x, x+1) 

   ∏x = Probability of giving birth in the year for a female in the age group (x, x+1). 

   ∏x
j = Probability of giving birth in the year j for a female in the age group  

                 (x, x+1). 

   λi and λc are the lower and upper bounds of the child bearing period respectively. 

 

5.3 REPRESENTATION OF THE COMPONENT METHOD BY THE USE OF 

LESLIE MATRIX (OR L. MATRIX). 

P.H.Leslie (1945) represented the component method of population projections by a 

matrix which is known as leslie matrix or l-matrix.  He made the following 

assumptions for representing this projection process: 

1. The projection is made on every 5th year ie., t=5; 
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2. The representation process has been made with respect to the female 

population only; 

3. Population is taken as stable population with the birth and death parameters as 

independent of time; 

4. Child bearing age is taken as 15 to 45 years: 

Notations: 

( )t

n xP  = Female population in the age group (x, x+n) at time t 

n xF  = Age specific fertility rate in the group (x, x+n) independent of time t. 

 With the above assumptions and notations, Leslie represented the component 

method of population projections as follows: 

 Consider the ‘Survivors of the present population’ component of the 

population projection as 

( ) ( ) ( )z t z t

n x t n x n xP P S

                                     (5.3.1) 

And  

( )t n x t
s x

n x

L
S survival Rate

L

   

Where ( )z t

n x tP 

  = x to x+n age group population projection after t years 

 ( )z

n xP  = x to x+n age group population in the present year (base year) 

 ( )t

n xS  = x to x+n age group survivor rate at year t and ( )t n x t
s x

n x

L
S

L

  

We have 

( 5) ( ) 5 5
5 5 5 0 5 0 5 0

5 0

t t L
P P S where S

L

                                   (5.3.2) 

 

( 5) ( ) 5 10
5 10 5 5 5 5 5 5

5 5

t t L
P P S where S

L

                              (5.3.3) 

 

( 5) ( ) 5 15
5 15 5 10 5 10 5 10

5 10

t t L
P P S where S

L

                                  ( 5.3.4) 
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------------------------------------------ 

------------------------------------------ 

 

( 5) ( ) 5 45
5 45 5 40 5 40 5 40

5 40

t t L
P P S where S

L

                                ( 5.3.10) 

Also  

 

( 5)

5 0

tP   Is given by 

 

( 5) ( ) ( 5) ( ) ( 5) ( ) ( 5)

5 0 5 15 5 15 5 15 0 5 20 5 20 5 20 0 5 40 5 40 5 40 0

1 1 1

2 2 2

t t t t t t tP P P F P P F P P F                      

                              

(5.3.11) 

 

Where  

5 0
0

0

L

l
    the probability of survival from birth to the age group 0 to 0+5 

5

0

x
x

L

l
    the probability of survival from birth to the age group x to x+5 

Using the expressions for ( 5) ( 5) ( 5) ( 5)

5 15 5 20 5 20 5 40, , ,...........,t t t tP P P P     we rewrite ( 5)

5 0

tP   as 

 

( 5) ( ) ( ) ( ) ( ) ( ) ( )

5 0 5 15 5 10 5 10 5 15 0 5 20 5 15 5 15 5 20 0 5 40 5 35 5 35 5 40 0

1 1 1

2 2 2

t t t t t t tP P P S F P P S F P P S F                    

                              

(5.3.12) 

( 5) ( ) ( ) ( )

5 0 5 10 5 15 0 5 10 5 15 5 15 5 20 0 5 15 5 20 5 20 5 25 0 5 20

( ) ( )

5 35 5 35 5 40 0 5 35 0 5 40 5 40

1 1 1

2 2 2
1 1

2 2

t t t t

t t

P S F P F S F P F S F P

F S F P F P

                        

          

                              

(5.3.13) 
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The equations (5.3.2) to (5.3.13) can be expressed in the form of a matrix, known as 

Leslie matrix. 

 

   0 0 0
( 5) 5 10 5 15 5 15 5 15 5 20 5 40

5 0

( 5)

5 5 5 0

( 5)

5 10 5 5

( 5)

5 15 5 10

( 5)

5 45 10 1

0 0
2 2 2

0 0 0 ... ... ... 0

0 0 0 ... ... ... 0

0 0 0 ... ... ... 0

0 0 0 0 ... ... ...

t

t

t

t

t

X

S F F S F F
P

P S

P S

P S

P











  


 
 
 
 
 

 
 
 
 
 
  

( )

5 0

( )

5 5

( )

5 10

( )

5 15

( )

5 40 9 1
5 40 10 9

t

t

t

t
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X
X

P

P

P

P

P
S

 
  
  
  
  
  
  
  
  
  
  
  
    

                              

    

(5.3.14) 

 

( 5) ( )

10 1 10 9 9 1

t t

X X XP L P                           (5.3.15) 

 

Where P(t+5) and p(t) represent the population age vector in year (t+5) and t 

respectively: 

L is the Leslie matrix, consists of the elements which are functions of Fertility and 

mortality parameters which are independent of time. 

Thus, with time independent Leslie matrix,  

we have, 

( 5) ( )   t tP L P   

( 10) ( 5) ( ) 2 ( )         t t t tP L P L L P L P     

    ( 15) ( 10) 3 ( )     t t tP L P L P    : 

    : 

    : 

    ( 5 ) ( )   ,t k k tP L P   for an integer k. 
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This shows the sequence { ( ) ( 5) ( 10) ,  ,  ,t t tP P P  } gives a simple mark chain. 

 

Remark: 

Matrix has only one positive Eigen value and the other eigen values are either 

complex or negative 

 

5.4 CHANDRASEKHARAN AND DEMING’S METHOD OF ESTIMATING 

VITAL RATES FROM REGISTRATION DATA 

C. Chandrasekharan and W.I. Deming (1949) have proposed a mathematical 

technique which is useful to compose the Registrar’s list of births and deaths with that 

if a list obtained from a house to house canvass.  This method provides the estimates 

of the total no. of events over the area in a specified period. 

Let 

R:  The Registrar’s list 

 I:    List obtained by Interviewers by a genyalete house to house canvass 

C: The no. of events which are recorded in I as well as in R and these are              

correct events 

 N1: Entries recorded in R but not in I and after investigation found to be correct 

 N2: Entries recorded only in I but not in R and after investigation found to be  

                   correct 

 X:  Entries recorded on one list r the other but not in both and found in correct      

      after verification 

N: The total no. of events 

Y: No. of events which are missed by both R and I 

 

Chandrasekharan and Deming Formula: 

Chandrasekharan and Deming estimate of N is given by  

1 2 
ˆ ˆ      N C N N Y                 (5.4.1) 
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We have,     1 2 ˆ N N
Y

C
             

(5.4.2) 

Proof: 

Probability of R detecting and event is 

1
1

C N
p

N


  

Probability of I detecting an event is  

2
2

C N
p

N


  

Probability of an event being missed by both R and I as 

 

1 2
1 2(1 )(1 ) 1 1

C N C N
p p

N N

   
      

  
 

 

1 2
1 2( ) 1 1

C N C N
C N N Y Y

N N

   
        

  
 

 

  
1 2

1 2

1 2

( )
N N

C N N Y Y
C N C N

    
 

 

 

  1 21 2
1 2

ˆ
C N C NN N

N C N N
C C

 
                               (5.4.3) 

Because 1 2 ˆ N N
Y

C
  

It should be noted that 

(i) 1 2
1 2

ˆ N N
N C N N

C
      is an unbiased estimate of N 

(ii) N̂  is the maximum likelihood estimate of N  

(iii) The standard error of N̂  is given by 1 2

1 2

ˆ. ( )
Nq q

S E N
p p

   where  
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1 1 2 21 1q p and q p     

 

Remark: The Validity of this method depends on the correlation of events in the list 

of R and I. 

 

5.5 LOTKA AND DUBLIN (1949) MODEL FOR STABLE POPULATION    

      ANALYSIS 

This analysis is based on the consideration that 

(i) The population growth is independent of time when both fertility and the 

mortality  

rates are also time independent and 

(ii) The population is closed under migration (there is balance between migrants 

and  

Immigrants) 

The structural form of the stable population is characterized by 

(i) Birth rate is independent of t 

(ii) Death rate is independent of t 

(iii) The age distribution between ages (x, x + δ x) is independent of t. 

(iv) The population is closed to migration 

Notations:- 

(i)  ,  C x t x  = The proportion of population is the age group (x, x+ δ x) at time t 

(ii)  B t = Total no. of births at time t 

(iii)  P t = Population at time t 

(iv)  
 

 

B t
b t

P t
 = Birthrate per individual 

(v)  p x = Probability of surviving up to age x. (Independent of t) 
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(vi)    f x x = Probability of giving a birth between age (x, x + δ x) (independent    

of t) 

(vii)    dx x =  Probability of giving between (x, x+ δ x) 

This analysis is restricted to female cohorts, we have the basic identity 

 

       ,   –  P t C x t x B t x p x x                                                 (5.5.1) 

 

Where B(t – x) is no. of births at time t by the age group (x, x + δ x) 

 

       ,    –   p t C x t B t x p x   

 

       
0 0

, ( )    –   ( )p t C x t f x dx B t x p x f x dx

 

                                   (5.5.2) 

The R.H.S of (5.5.2) gives the births at time t. 

Thus, we can write 

 

     
0

   –   ( )B t B t x p x f x dx



                     (5.5.3) 

(5.5.3)  is an integral equation with time lag x. 

Lotka and Dublin assumed a trial solution of the form 

 

 
0

  nr t

n

n

B t Q e




            (5.5.4) 

Where Q0, Q1, Q2, ………….. are the populations at the beginning of each year 

under consideration and treated them as constants; 

Substituting (5.5.4) in (5.5.3) gives 
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               ( )

0 00

( )n nr t r t x

n n

n n

Q e Q e p x f x dx

 


 

   

 

 
0 0 0

( )n n nr t r t r t

n n

n n

Q e Q e e p x f x dx

 


 

 
  

 
                      (5.5.5) 

 

It appears that r0, r1, r2, ………. rn correspond to the roots of the integral 

 

 
0

( ) 1rxe p x f x dx



          (5.5.6) 

Equation( 5.5.6) is known as Lotka’s Integral equation. 

 

(5.5.6) =>  
0

1rxe x dx


       (5.5.7) 

Where       ( )x p x f x   is the net maternity function. 

Remarks:   0

0

( )p x f x dx R



  net reproduction rate per women 

To obtain real root of the Lotka’s integral equation (5.5.6), 

We put  

 

 
0

( )rxy e p x f x dx



                                    (5.5.8) 

 

  
0

( )rxdy d
e p x f x dx

dr dr



     

 

  
0

( )rxdy
x e p x f x dx

dr



     
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= 

  

 
 0

0

0

( )

( )

( )

rx

rx

rx

x e p x f x dx

e p x f x dx

e p x f x dx













 
 

       
 
 






  

 

=  ( )A r Y  

Where  

 

  

 

0

0

( )

( )

( )

rx

rx

x e p x f x dx

A r

e p x f x dx









 
 
 
 
 
 





                         (5.5.9) 

 

We have the differential equation 

. ( )
dy

Y A r
dr

                              (5.5.10) 

By solving differential equation, a solution of r is given by 

 

2 2

1 1 1 2
0

0 0 0 0

2

1 2

0 0

2 4 8 log

2

e

R R R R
R

R R R R
r

R R

R R

      
         
       


  
  
   

         (5.5.11) 

 

Where r is the growth parameter of stable population.  

Here R0, R1 and R2 are estimated as 

 

 0
ˆ ( ) . .R p x f x N R R        (5.5.12) 
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 

 1

( )
ˆ

( )

xp x f x
R

p x f x
 



 Mean age of child bearing  (5.5.13) 

 

 

 

2

2

( )
ˆ

( )

x p x f x
R

p x f x




      (5.5.14) 

 

By substituting 
0 1 2

ˆ ˆ ˆ, andR R R  for R0, R1 and R2 in (5.5.11), the two real roots of r can 

be obtained as one root is positive and the other is negative. 

 

5.6 CONCEPT OF STATIONARY POPULATION 

 A hypothetical model of a population, based on unchanging conditions of 

fertility, mortality and the total size, is called a stationary population. A population 

generated by any given life table is essentially a stationary population. The crude birth 

and death rates of the stationary population are equal. 

 The main characteristics of stationary population are: 

1. The total size of the population is constant 

2. The annual no. of births (and also deaths) is constant. 

3. The age composition of population is invariable 

4. Crude birth rate is equal to crude death rate. 

i.e., These characteristics are fixed in time. 

 

5.7 CONCEPT OF STABLE POPULATION 

 Any population with a constant age distribution and which is increasing at a 

constant rate is called a stable population. A stationary population is then a special 

case of a stable population in which the rate of growth is zero and the age distribution 

is same as the life table age distribution. 

 

Certain Results in Stable Population Analysis 
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(i) Birth and death rates are independent of time. 

(ii)    ,  C x t C x  ie., Age distribution is independent of ‘t’.  

Thus birth and death rates as well as age distribution may undergo changes but these 

changes are only of random nature. 

 

 

Certain Important Deductions of stable population Analysis 

In the stable population analysis, we have 

(i)       –  r xB t B t x e                                                                                                 

(5.7.1) 

(ii) 
   

 –  ( )
( ; ) ( ) ( )

( )

r x
B t x p x

C x t b t e p x
p t

                                                     (5.7.2) 

(iii) 

 
0

1
( )

rx

b t

e p x dx





 



birth rate (independent of time)                             (5.7.3) 

(iv) 
 

 
0

( ; )

rx

rx

e p x
C x t

e p x dx







 



 age distribution (independent of time)       (5.7.4) 
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