

# Thermodynamic investigations of excess heat capacities of ternary liquid mixtures containing [Bmmim][BF<sub>4</sub>] + [Bmim][BF<sub>4</sub>] or [Emim][BF<sub>4</sub>] + cyclopentanone or cyclohexanone

Heena Gupta<sup>1</sup>  $\cdot$  Sunita Malik<sup>1</sup>  $\cdot$  Masta Chandrasekhar<sup>2</sup>  $\cdot$  Vinod Kumar Sharma<sup>1</sup>

Received: 9 January 2017/Accepted: 15 July 2017 © Akadémiai Kiadó, Budapest, Hungary 2017

Abstract In this paper, molar heat capacities  $(C_P)_{123}$  data of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate, [Bmmim][BF<sub>4</sub>] (1) + 1-butyl-3-methylimidazolium tetrafluoroborate, [Bmim][BF4] or 1-ethyl-3-methylimidazolium tetrafluoroborate,  $[\text{Emim}][\text{BF}_4]$  (2) + cyclopentanone or cyclohexanone (3) mixtures have been reported over the entire range of composition at (293.15, 298.15, 303.15, 308.15) K using micro-differential scanning calorimeter (ModelµDSC 7 Evo). The results have been utilized to calculate excess heat capacities  $(C_{\rm P}^{\rm E})_{123}$  values of the studied mixtures. The  $(C_{\rm P}^{\rm E})_{123}$  data have been fitted to Redlich–Kister equation to obtain ternary coefficients and standard deviations. The Moelwyn-Huggins concept of interaction between the surfaces of constituents of binary mixtures (Huggins in J Phys Chem 74:371–378, 1970) containing ionic liquid as one of the component has been extended to obtain expression (Graph theory) for  $(C_{\rm P}^{\rm E})_{123}$  of ternary mixtures. The comparison between experimental and estimated values (Graph theory) 1-butyl-2,3-dimethylimidazolium suggests that while tetrafluoroborate or 1-butyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium tetrafluoroborate exists as monomer, cyclopentanone or cyclohexanone exists as mixture of open and cyclic dimer. The results further support the various processes involved in the formation of present mixtures. The  $(C_{\rm P}^{\rm E})_{123}$  values have also been tested in term of modified Flory's theory.

**Keywords** 1-butyl-2,3-dimethylimidazolium tetrafluoroborate · Micro-DSC · Excess heat capacities ·  $(C_P^E)_{123}$ , connectivity parameter of third degree ·  ${}^{3}\xi$ , interaction energy parameter,  $\chi$ 

### Introduction

Thermodynamic properties of liquid mixtures have great importance in theoretical and applied areas of research. The knowledge of these properties is frequently used in the design processes like flow, mass transfer or heat transfer calculations of many chemical and industrial processes [1-3]. Also these properties of liquid mixtures represent a useful complementary tool to extract the information about the structural features of the constituents of the mixture in pure as well as mixed state. The molar heat capacity,  $C_{\rm P}$ , of a substance is a basic pure component property which plays a central role in all processes involving the uptake, release or transfer of heat energy and thus can be utilized for many engineering calculations [4–6]. Molar heat capacities,  $C_{\rm P}$ , and excess heat capacities,  $C_{\rm P}^{\rm E}$ , of liquid mixtures are most needed properties in the design as well as optimization of the industrial processes such as food processing, estimation of heating or cooling requirements, heat storage capacity and also of equipment in the part where heat transfer is important [7-10].

In recent studies, excess heat capacities,  $C_P^E$ , of 1-butyl-2,3dimethylimidazolium tetrafluoroborate (1) + 1-butyl-3methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium tetrafluoroborate (2); 1-butyl-2,3-dimethylimidazolium tetrafluoroborate or 1-butyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium tetrafluoroborate (1) + cyclopentanone or cyclohexanone (2) binary

<sup>☑</sup> Vinod Kumar Sharma v\_sharmachem58@rediffmail.com

<sup>&</sup>lt;sup>1</sup> Department of Chemistry, M. D. University, Rohtak, Haryana, India

<sup>&</sup>lt;sup>2</sup> Department of Physics, Vignan Institute of Technology and Science, Hyderabad, Telangana, India

ionic liquid mixtures have been reported over entire composition range at (293.15, 298.15, 303.15 and 308.15) K. The topology of the constituent molecules (Graph theory) has been successfully utilized to compute excess heat capacities  $C_{\rm P}^{\rm E}$  of the studied mixtures [11-14]. In the present paper, we extend our study to ternary mixtures and report excess heat capacities,  $(C_{\rm P}^{\rm E})_{123}$ , of ternary 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (1) + 1-butyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium tetrafluoroborate (2) + cyclopentanone or cyclohexanone (3) mixtures over the temperature range (293.15-308.15) K having interval of 5 K. The  $(C_{\rm P}^{\rm E})_{123}$  data of the said mixtures are not available in the literature. Further, it would be of interest to show how the Graph theory (which in turn deals with the topology of the constituent molecules) describes the  $(C_{\rm P}^{\rm E})_{123}$  values of present ternary mixtures. These considerations prompted use to measure molar heat capacities  $(C_P)_{123}$  data of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (1) + 1-butyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium tetrafluoroborate (2) + cyclopentanone or cyclohexanone (3) mixtures at (293.15, 298.15, 303.15 and 308.15) K.

# Experimental

### Materials

Ionic liquids (ILs) used in this work: 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [Bmmim][BF<sub>4</sub>]; (mass fraction:  $\geq$ 0.998), 1-butyl-3-methylimidazolium tetrafluoroborate [Bmim][BF<sub>4</sub>]; (mass fraction:  $\geq$ 0.993) and 1-ethyl-3methylimidazolium tetrafluoroborate [Emim][BF<sub>4</sub>]; (mass fraction:  $\geq$ 0.990) obtained from Fluka were used for measurements without further purification. The water content in present ILs was estimated periodically by Karl Fischer Titration and was found to be less than (180–220) ppm [15]. Cyclopentanone (Fluka, mass fraction:  $\geq$ 0.995) and cyclohexanone (Fluka, mass fraction:  $\geq$ 0.990) were purified by standard methods [16]. The purification procedure and analysis methods of all chemicals used in this study along with their suppliers, CAS number and stated purities are given in Table 1. The densities,  $\rho$ , and speeds of sound, u, values were measured to check the purity of the purified liquids at the studied temperatures using an vibrating tube densitometer (Anton Paar DSA 5000) with an estimated accuracy of  $\pm 0.5$  kg m<sup>-3</sup> and 0.5 m s<sup>-1</sup>, respectively, in the manner as described elsewhere [17, 18]. Such  $\rho$  and u values along with their literature values [14, 19–37] are reported in Table 2. It has been observed that measured  $\rho$  and u values are in agreement with the literature values.

#### Apparatus and procedure

Molar heat capacities of pure liquids and the investigated ternary mixtures were measured by a high-sensitivity micro-differential calorimeter scanning Micro-DSC (Model-µDSC 7 Evo), from M/S SETARAM, France, in the manner as described elsewhere [38]. The calorimeter is based on the Tian-Calvet principle, which determines the change of heat flow from/to the liquid sample upon temperature scanning of 0.4 °C min<sup>-1</sup> and uses a double-stage temperature control with Peltier coolers that works between -45 and 120 °C. The calibration of calorimeter was done by Joule effect method and checked by measuring heat of fusion of naphthalene which was found to be 148.51 J  $g^{-1}$  which in turn was comparable to literature value 148.7 J  $g^{-1}$  [39]. The instrument is comprised of two differentially assembled reference and experimental batch cells lodged in a calorimetric block immersed in an inert atmosphere of nitrogen gas (constant sweeping of nitrogen gas at 0.8 bar pressure). Pure liquid or a mixture of known composition was taken in the experimental batch cell with the help of micropipette. Ternary mixtures were prepared by weighing the components using a digital electronic balance (Mettler AX-205) with an uncertainty of  $\pm 1 \times 10^{-5}$  g for all measurements and kept in air-tight glass bottles to minimize the absorption of atmospheric moisture. The estimated uncertainty in the mole fraction was found to be  $\pm 1 \times 10^{-4}$ . The equipment was scanned for temperature cycle 15 °C (initial temperature) and 45 °C (final temperature) at the scanning (heating or cooling) rate  $0.4 \,^{\circ}\text{C} \,^{\text{min}^{-1}}$ . The stability in the calorimetric signal was

| Table 1 Details of chemical source, CAS number | purification method, final | purities and analysis methods |
|------------------------------------------------|----------------------------|-------------------------------|
|------------------------------------------------|----------------------------|-------------------------------|

| Chemical name                                      | Source | CAS<br>number | Purification method     | Final purity<br>(mass fraction) | Analysis<br>method |
|----------------------------------------------------|--------|---------------|-------------------------|---------------------------------|--------------------|
| 1-butyl-2,3-dimethyl imidazolium tetrafluoroborate | Fluka  | 402846-78-0   | Used as received        | ≥0.998                          | -                  |
| 1-butyl-3-methyl imidazolium tetrafluoroborate     | Fluka  | 174501-65-6   | Used as such            | ≥0.993                          | -                  |
| 1-ethyl-3-methyl imidazolium tetrafluoroborate     | Fluka  | 143314-16-3   | Used as such            | ≥0.990                          | -                  |
| Cyclopentanone                                     | Fluka  | 120-92-3      | Fractional distillation | ≥0.995                          | GC                 |
| Cyclohexanone                                      | Fluka  | 108-94-1      | Fractional distillation | ≥0.990                          | GC                 |

GC gas chromatography

**Table 2** Comparison of experimental densities,  $\rho$ , speeds of sound, u, and molar heat capacities,  $C_p$ , values of pure components with literature values at T = (293.15-308.15) K

| Components                | <i>T</i> /K | $ ho/{\rm kg}~{\rm m}^{-3}$ |                       | $u/m s^{-1}$ |                       | $C_{\rm p}/{\rm J}~{\rm K}^{-1}~{\rm m}$ | $ol^{-1}$            |
|---------------------------|-------------|-----------------------------|-----------------------|--------------|-----------------------|------------------------------------------|----------------------|
|                           |             | Expt.                       | Lit.                  | Expt.        | Lit.                  | Expt.                                    | Lit.                 |
| [Bmmim][BF <sub>4</sub> ] | 293.15      | 1193.5                      | 1196.716 <sup>a</sup> | 1659.7       | 1654.88 <sup>a</sup>  | 413.03                                   | _                    |
|                           | 298.15      | 1191.8                      | 1191.2 <sup>b</sup>   | 1645.7       | 1641.44 <sup>a</sup>  | 416.01                                   | -                    |
|                           |             |                             | 1193.338 <sup>a</sup> |              |                       |                                          |                      |
|                           |             |                             | 1193.19 <sup>c</sup>  |              |                       |                                          |                      |
|                           | 303.15      | 1189.7                      | 1189.80 <sup>c</sup>  | 1632.5       | 1628.74 <sup>a</sup>  | 418.84                                   | -                    |
|                           |             |                             | 1189.921 <sup>a</sup> |              |                       |                                          |                      |
|                           | 308.15      | 1187.9                      | 1186.516 <sup>a</sup> | 1619.8       | 1616.88 <sup>a</sup>  | 421.70                                   | _                    |
| [Bmim][BF <sub>4</sub> ]  | 293.15      | 1203.1                      | 1204.6 <sup>d</sup>   | 1578.1       | $1578.0^{\mathrm{f}}$ | 362.35                                   | 362.31 <sup>u</sup>  |
|                           |             |                             | 1204.16 <sup>e</sup>  |              |                       |                                          | $362.5^{f}$          |
|                           |             |                             | $1202.952^{\rm f}$    |              |                       |                                          |                      |
|                           | 298.15      | 1198.9                      | 1198.78 <sup>g</sup>  | 1565.5       | 1565.1 <sup>f</sup>   | 365.12                                   | $364.8^{\mathrm{f}}$ |
|                           |             |                             | 1199.387 <sup>f</sup> |              | 1565.09 <sup>g</sup>  |                                          | 366.28 <sup>g</sup>  |
|                           |             |                             |                       |              | 1566 <sup>h</sup>     |                                          |                      |
|                           | 303.15      | 1195.3                      | 1195.18 <sup>g</sup>  | 1554.1       | 1554 <sup>f</sup>     | 367.48                                   | 367.37 <sup>u</sup>  |
|                           |             |                             | 1196.98 <sup>e</sup>  |              | 1555.5 <sup>f</sup>   |                                          | 367.2 <sup>f</sup>   |
|                           |             |                             | 1195.818 <sup>f</sup> |              | 1553.15 <sup>g</sup>  |                                          |                      |
|                           | 308.15      | 1191.7                      | 1192.266 <sup>f</sup> | 1542.3       | 1542 <sup>f</sup>     | 369.88                                   | 369.94 <sup>u</sup>  |
|                           |             |                             | 1191.60 <sup>g</sup>  |              | 1540.3 <sup>f</sup>   |                                          | 369.5 <sup>f</sup>   |
| [Emim][BF <sub>4</sub> ]  | 293.15      | 1283.9                      | 1284 <sup>i</sup>     | 1631.1       | 1631.1 <sup>m</sup>   | 303.20                                   | 303.23 <sup>v</sup>  |
| [Emim][BF <sub>4</sub> ]  | 298.15      | 1279.9                      | 1280 <sup>i</sup>     | 1619.2       | 1622.89 <sup>k</sup>  | 304.53                                   | 304.87 <sup>v</sup>  |
|                           |             |                             | 1280.07 <sup>j</sup>  |              | 1629 <sup>1</sup>     |                                          |                      |
|                           | 303.15      | 1276.3                      | 1276 <sup>i</sup>     | 1607.4       | 1608.1 <sup>m</sup>   | 306.29                                   | 306.58 <sup>v</sup>  |
|                           | 308.15      | 1272.1                      | 1272 <sup>i</sup>     | 1596.2       | 1599.47 <sup>k</sup>  | 308.03                                   | 308.36 <sup>v</sup>  |
|                           |             |                             | 1272.48 <sup>j</sup>  |              | 1606 <sup>1</sup>     |                                          |                      |
| Cyclopentanone            | 293.15      | 949.3                       | 949.34 <sup>m</sup>   | 1414.6       | 1414.3 <sup>m</sup>   | 152.95                                   | 152.99 <sup>m</sup>  |
| <b>J</b> 1                | 298.15      | 944.5                       | 944.52 <sup>m</sup>   | 1393.6       | 1393.2 <sup>m</sup>   | 154.45                                   | 154.69 <sup>m</sup>  |
| Cyclopentanone            |             |                             | 944.35 <sup>n</sup>   |              | 1394.1 <sup>p</sup>   |                                          | 154.5 <sup>w</sup>   |
|                           |             |                             | 945.3°                |              |                       |                                          |                      |
|                           | 303.15      | 939.7                       | 939.68 <sup>m</sup>   | 1372.6       | 1372.5 <sup>m</sup>   | 155.61                                   | 155.74 <sup>m</sup>  |
|                           | 308.15      | 934.8                       | 934.84 <sup>m</sup>   | 1352.2       | 1352.6 <sup>m</sup>   | 156.76                                   | 156.81 <sup>m</sup>  |
|                           |             |                             | 934.69 <sup>n</sup>   |              |                       |                                          |                      |
| Cvclohexanone             | 293.15      | 947.4                       | 947.39 <sup>m</sup>   | 1431.2       | 1430.5 <sup>q</sup>   | 176.17                                   | 176.19 <sup>m</sup>  |
| - ,                       |             |                             | 947.80 <sup>r</sup>   |              | 1431.9 <sup>m</sup>   |                                          |                      |
|                           | 298.15      | 942.9                       | 942.90 <sup>m</sup>   | 1414.5       | 1408.0 <sup>p</sup>   | 178.27                                   | 178.37 <sup>m</sup>  |
|                           |             |                             | 942.76 <sup>s</sup>   |              | 1414.8 <sup>m</sup>   |                                          | 177.97 <sup>x</sup>  |
|                           | 303.15      | 938.1                       | 938.05 <sup>m</sup>   | 1395.1       | 1395.6 <sup>m</sup>   | 180.38                                   | 180.46 <sup>m</sup>  |
|                           |             |                             | 940.3 <sup>t</sup>    |              |                       |                                          |                      |
|                           | 308.15      | 933.2                       | 933.18 <sup>m</sup>   | 1375.1       | 1375 8 <sup>m</sup>   | 182.46                                   | 182.39 <sup>m</sup>  |
|                           | 200.12      | ,                           | 933.8 <sup>s</sup>    | 107011       | 10,0.0                | 102.10                                   | 102.09               |
|                           |             |                             | 155.0                 |              |                       |                                          |                      |

Standard uncertainties, *u*, are *u* (*T*) (DSA) =  $\pm 0.01$  K; *u* ( $\rho$ ) =  $\pm 0.5$  kg m<sup>-3</sup>; *u* (*u*) =  $\pm 0.5$  m s<sup>-1</sup>; *u* ( $C_p$ ) =  $\pm 0.8\%$ ; *u* (*T*) (DSC) =  $\pm 0.02$  K <sup>a</sup> Ref. [19], <sup>b</sup> Ref. [20], <sup>c</sup> Ref. [21], <sup>d</sup> Ref. [22], <sup>e</sup> Ref. [23], <sup>f</sup> Ref. [24], <sup>g</sup> Ref. [25], <sup>h</sup> Ref. [26], <sup>i</sup> Ref. [27], <sup>j</sup> Ref. [28], <sup>k</sup> Ref. [29], <sup>1</sup> Ref. [30], <sup>m</sup> Ref. [14], <sup>n</sup> Ref. [31], <sup>o</sup> Ref. [32], <sup>p</sup> Ref. [33], <sup>q</sup> Ref. [34], <sup>r</sup> Ref. [35], <sup>s</sup> Ref. [36], <sup>t</sup> Ref. [37], <sup>u</sup> Ref. [40], <sup>v</sup> Ref. [41], <sup>w</sup> Ref. [42], <sup>x</sup> Ref. [43]

produced by scanning (900 s) an isothermal level at the initial and final temperature. The temperature cycle and scanning rate of isothermal level was maintained by

software. After scanning, a graph between heat flow and calorimeter temperature along with  $C_{\rm P}$  values was displayed. The  $C_{\rm P}$  values of the purified liquids are

summarized in Table 2 and compared with their literature values [40–43]. The standard uncertainties of the reported  $C_{\rm P}$  values and temperature are estimated to be  $\pm 0.8\%$  and  $\pm 0.02$  K, respectively.

# Results

The molar heat capacities  $(C_P)_{123}$  of [Bmmim][BF<sub>4</sub>] (1) + [Bmim][BF<sub>4</sub>] or [Emim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) ternary mixtures were measured over entire mole fraction of (1) and (2) components in temperature range of (293.15–308.15) K with 5-K interval and are listed in Table 3. The excess heat capacities,  $(C_P^E)_{123}$ , the difference between the molar heat capacities of the mixture and the summation of the pure components contribution were calculated for the present (1 + 2 + 3) mixtures using expression cited in the work of Lide and Kehiaian [44]:

$$(C_{\rm P}^{\rm E})_{123} = (C_{\rm P})_{123} - \sum_{1=1}^{3} x_1 (C_{\rm P})_1$$
 (1)

where  $(C_{\rm P})_{123}$ ,  $(C_{\rm P})_1$  (1 = 1 or 2 or 3),  $x_1$  (1 = 1 or 2 or 3) denote molar heat capacities of the ternary mixtures, molar heat capacities and mole fraction of pure component (1 = 1 or 2 or 3), respectively. The obtained  $(C_{\rm P}^{\rm E})_{123}$  values for the investigated mixtures are recorded in Table 3.

The experimental  $(C_P^E)_{123}$  data at the studied temperatures were fitted to Redlich–Kister equation [45]:

$$(C_{\rm P}^{\rm E})_{123} = x_1 x_2 \left[ \sum_{n=0}^{2} (C_{\rm P})_{12}^{(n)} (x_1 - x_2)^n \right] \\ + x_2 x_3 \left[ \sum_{n=0}^{2} (C_{\rm P})_{23}^{(n)} (x_2 - x_3)^n \right] \\ + x_1 x_3 \left[ \sum_{n=0}^{2} (C_{\rm P})_{13}^{(n)} (x_1 - x_3)^n \right] \\ + x_1 x_2 x_3 \left[ \sum_{n=0}^{2} (C_{\rm P})_{123}^{(n)} (x_2 - x_3)^n x_1^n \right]$$
(2)

where  $x_1$ ,  $x_2$  and  $x_3$  are the mole fractions of (1), (2) and (3) components. The  $(C_P)_{12}^{(n)}$ ,  $(C_P)_{23}^{(n)}$ ,  $(C_P)_{13}^{(n)}$ , (n = 0-2), are parameters of sub-binary mixtures (1 + 2), (2 + 3), (1 + 3) of (1 + 2 + 3) mixture and were taken from the literature [11–14]. The  $(C_P)_{123}^{(n)}$  (n = 0-2) are characteristic parameters of (1 + 2 + 3) mixture and were obtained by fitting the measured  $(C_P^E)_{123}$  data to Eq. (2) by least-squares method. The quality of the fit was assessed via the standard deviation,  $(C_P^E)_{123}$ , expressed as:

**Table 3** Comparison of experimental, excess heat capacities  $(C_P^E)_{123}$  data for the various (1 + 2 + 3) ternary mixtures with values predicted from the Graph and Flory theories at T = (293.15-308.15) K

| $x_1$    | <i>x</i> <sub>2</sub>  | $(C_{\rm p})_{123}/J_{\rm V}^{-1}$ m s <sup>1-1</sup> | $\frac{\left(C_{\rm P}^{\rm E}\right)_{123}/\rm{J}~\rm{K}^{-1}~\rm{mol}^{-1}}{\rm{Fxptl}}$ |            |       |
|----------|------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|-------|
|          |                        | K IIIOI                                               | Exptl.                                                                                     | Graph      | Flory |
| [Bmmim]  | [BF <sub>4</sub> ] (1) | + [Bmim][BF <sub>4</sub> ]                            | (2) + cycle                                                                                | opentanone | (3)   |
| T/K = 29 | 3.15                   |                                                       |                                                                                            |            |       |
| 0.0922   | 0.7616                 | 353.23                                                | 16.82                                                                                      | 18.48      | -0.41 |
| 0.1043   | 0.7529                 | 350.60                                                | 12.87                                                                                      | 12.87      | -0.56 |
| 0.1481   | 0.7191                 | 338.15                                                | -3.90                                                                                      | -4.68      | -1.06 |
| 0.1705   | 0.7018                 | 332.87                                                | -11.38                                                                                     | -12.34     | -1.29 |
| 0.2163   | 0.6664                 | 325.51                                                | -23.24                                                                                     | -25.35     | -1.75 |
| 0.2368   | 0.6403                 | 323.55                                                | -25.07                                                                                     | -27.31     | -1.77 |
| 0.2772   | 0.5889                 | 321.24                                                | -27.12                                                                                     | -29.53     | -1.76 |
| 0.2971   | 0.5636                 | 320.70                                                | -27.53                                                                                     | -29.86     | -1.73 |
| 0.3169   | 0.5385                 | 320.29                                                | -27.84                                                                                     | -29.73     | -1.70 |
| 0.3364   | 0.5136                 | 319.62                                                | -28.37                                                                                     | -29.12     | -1.65 |
| 0.3601   | 0.4949                 | 320.11                                                | -30.13                                                                                     | -30.13     | -1.78 |
| 0.3841   | 0.4759                 | 321.40                                                | -31.10                                                                                     | -30.52     | -1.89 |
| 0.4084   | 0.4566                 | 323.22                                                | -31.56                                                                                     | -30.32     | -1.99 |
| 0.4332   | 0.4370                 | 325.76                                                | -31.37                                                                                     | -29.59     | -2.09 |
| 0.4583   | 0.4172                 | 328.99                                                | -30.51                                                                                     | -28.35     | -2.17 |
| 0.4838   | 0.3970                 | 332.94                                                | -28.97                                                                                     | -26.62     | -2.23 |
| 0.5064   | 0.3742                 | 337.06                                                | -25.95                                                                                     | -23.63     | -2.17 |
| 0.5198   | 0.3566                 | 340.33                                                | -22.48                                                                                     | -20.83     | -2.05 |
| 0.5328   | 0.3395                 | 343.64                                                | -18.97                                                                                     | -18.09     | -1.93 |
| 0.5453   | 0.3230                 | 346.97                                                | -15.44                                                                                     | -15.44     | -1.80 |
| 0.5575   | 0.3070                 | 350.22                                                | -12.01                                                                                     | -12.87     | -1.67 |
| 0.5693   | 0.2915                 | 353.42                                                | -8.63                                                                                      | -10.39     | -1.54 |
| 0.5807   | 0.2765                 | 356.44                                                | -5.43                                                                                      | -6.01      | -1.41 |
| 0.6049   | 0.2570                 | 361.07                                                | -3.01                                                                                      | -4.18      | -1.38 |
| 0.6228   | 0.2454                 | 364.16                                                | -2.15                                                                                      | -3.59      | -1.40 |
| 0.6405   | 0.2338                 | 367.19                                                | -1.30                                                                                      | -2.00      | -1.42 |
| 0.6581   | 0.2224                 | 370.21                                                | -0.47                                                                                      | -0.46      | -1.43 |
| 0.6680   | 0.2087                 | 372.00                                                | 1.62                                                                                       | 1.62       | -1.27 |
| 0.6846   | 0.1870                 | 374.35                                                | 4.20                                                                                       | 4.72       | -1.03 |
| 0.7011   | 0.1655                 | 376.79                                                | 6.84                                                                                       | 7.56       | -0.78 |
| 0.7175   | 0.1442                 | 378.82                                                | 9.07                                                                                       | 10.12      | -0.53 |
| 0.7709   | 0.1050                 | 387.17                                                | 11.74                                                                                      | 13.06      | -0.32 |
| T/K = 29 | 8.15                   |                                                       |                                                                                            |            |       |
| 0.0922   | 0.7616                 | 357.42                                                | 18.41                                                                                      | 20.23      | 0.01  |
| 0.1043   | 0.7529                 | 354.94                                                | 14.60                                                                                      | 14.60      | -0.11 |
| 0.1481   | 0.7191                 | 342.45                                                | -2.23                                                                                      | -2.99      | -0.52 |
| 0.1705   | 0.7018                 | 337.85                                                | -9.04                                                                                      | -10.64     | -0.71 |
| 0.2163   | 0.6664                 | 329.46                                                | -21.95                                                                                     | -23.64     | -1.09 |
| 0.2368   | 0.6403                 | 327.90                                                | -23.38                                                                                     | -25.58     | -1.07 |
| 0.2772   | 0.5889                 | 325.85                                                | -25.17                                                                                     | -27.80     | -1.00 |
| 0.2971   | 0.5636                 | 324.66                                                | -26.24                                                                                     | -28.14     | -0.96 |
| 0.3169   | 0.5385                 | 324.48                                                | -26.31                                                                                     | -28.04     | -0.91 |
| 0.3364   | 0.5136                 | 324.03                                                | -26.61                                                                                     | -27.48     | -0.84 |

| Table 3               | able 3 continued      |                                                              |                                                     |                            |       | Table 3 continued     |                       |                                          |                                                     |                            |       |
|-----------------------|-----------------------|--------------------------------------------------------------|-----------------------------------------------------|----------------------------|-------|-----------------------|-----------------------|------------------------------------------|-----------------------------------------------------|----------------------------|-------|
| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $(C_{\rm p})_{123}/{\rm J}_{{\rm K}^{-1}}$ mol <sup>-1</sup> | $\left(C_{\mathrm{P}}^{\mathrm{E}}\right)_{123}$ /J | $K^{-1}$ mol <sup>-1</sup> | 1     | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $(C_{\rm p})_{123}/{\rm J}_{\rm V}^{-1}$ | $\left(C_{\mathrm{P}}^{\mathrm{E}}\right)_{123}$ /J | $K^{-1}$ mol <sup>-1</sup> |       |
|                       |                       | K moi                                                        | Exptl.                                              | Graph                      | Flory |                       |                       | K IIIOI                                  | Exptl.                                              | Graph                      | Flory |
| 0.3601                | 0.4949                | 324.41                                                       | -28.49                                              | -28.49                     | -0.95 | 0.6228                | 0.2454                | 370.82                                   | -0.72                                               | -1.15                      | -0.15 |
| 0.3841                | 0.4759                | 325.72                                                       | -29.45                                              | -28.88                     | -1.05 | 0.6405                | 0.2338                | 373.78                                   | 0.03                                                | 0.62                       | -0.20 |
| 0.4084                | 0.4566                | 327.36                                                       | -30.10                                              | -28.69                     | -1.14 | 0.6581                | 0.2224                | 376.68                                   | 0.71                                                | 0.87                       | -0.25 |
| 0.4332                | 0.4370                | 329.88                                                       | -29.94                                              | -27.97                     | -1.23 | 0.6680                | 0.2087                | 378.29                                   | 2.62                                                | 2.62                       | -0.13 |
| 0.4583                | 0.4172                | 333.08                                                       | -29.13                                              | -26.74                     | -1.30 | 0.6846                | 0.1870                | 380.33                                   | 4.89                                                | 5.18                       | 0.04  |
| 0.4838                | 0.3970                | 337.12                                                       | -27.51                                              | -25.03                     | -1.36 | 0.7011                | 0.1655                | 382.46                                   | 7.23                                                | 7.45                       | 0.22  |
| 0.5064                | 0.3742                | 341.18                                                       | -24.56                                              | -22.10                     | -1.32 | 0.7175                | 0.1442                | 384.61                                   | 9.58                                                | 9.39                       | 0.39  |
| 0.5198                | 0.3566                | 344.28                                                       | -21.26                                              | -19.41                     | -1.20 | 0.7709                | 0.1050                | 393.24                                   | 12.46                                               | 11.58                      | 0.42  |
| 0.5328                | 0.3395                | 347.63                                                       | -17.70                                              | -16.78                     | -1.09 | T/K = 3               | 08.15                 |                                          |                                                     |                            |       |
| 0.5453                | 0.3230                | 350.88                                                       | -14.24                                              | -14.24                     | -0.97 | 0.0922                | 0.7616                | 365.07                                   | 21.57                                               | 23.37                      | 0.36  |
| 0.5575                | 0.3070                | 354.03                                                       | -10.91                                              | -11.80                     | -0.86 | 0.1043                | 0.7529                | 362.57                                   | 17.72                                               | 17.72                      | 0.26  |
| 0.5693                | 0.2915                | 357.14                                                       | -7.63                                               | -9.45                      | -0.74 | 0.1481                | 0.7191                | 349.41                                   | 0.16                                                | 0.11                       | -0.06 |
| 0.5807                | 0.2765                | 360.02                                                       | -4.57                                               | -5.20                      | -0.63 | 0.1705                | 0.7018                | 344.39                                   | -7.11                                               | -7.53                      | -0.22 |
| 0.6049                | 0.2570                | 364.54                                                       | -2.27                                               | -3.48                      | -0.62 | 0.2163                | 0.6664                | 336.60                                   | -19.49                                              | -20.45                     | -0.53 |
| 0.6228                | 0.2454                | 367.57                                                       | -1.47                                               | -2.92                      | -0.66 | 0.2368                | 0.6403                | 335.10                                   | -20.86                                              | -22.34                     | -0.48 |
| 0.6405                | 0.2338                | 370.56                                                       | -0.67                                               | -1.36                      | -0.69 | 0.2772                | 0.5889                | 332.89                                   | -22.82                                              | -24.52                     | -0.38 |
| 0.6581                | 0.2224                | 373.50                                                       | 0.06                                                | 0.14                       | -0.72 | 0.2971                | 0.5636                | 332.47                                   | -23.12                                              | -24.89                     | -0.32 |
| 0.6680                | 0.2087                | 375.20                                                       | 2.06                                                | 2.06                       | -0.59 | 0.3169                | 0.5385                | 332.06                                   | -23.42                                              | -24.83                     | -0.25 |
| 0.6846                | 0.1870                | 377.38                                                       | 4.47                                                | 4.88                       | -0.38 | 0.3364                | 0.5136                | 331.67                                   | -23.68                                              | -24.33                     | -0.18 |
| 0.7011                | 0.1655                | 379.63                                                       | 6.93                                                | 7.42                       | -0.17 | 0.3601                | 0.4949                | 332.32                                   | -25.32                                              | -25.32                     | -0.27 |
| 0.7175                | 0.1442                | 381.99                                                       | 9.49                                                | 9.66                       | 0.04  | 0.3841                | 0.4759                | 333.70                                   | -26.25                                              | -25.69                     | -0.36 |
| 0.7709                | 0.1050                | 390.28                                                       | 12.07                                               | 12.23                      | 0.15  | 0.4084                | 0.4566                | 335.55                                   | -26.72                                              | -25.48                     | -0.44 |
| T/K = 3               | 03.15                 |                                                              |                                                     |                            |       | 0.4332                | 0.4370                | 337.94                                   | -26.72                                              | -24.74                     | -0.52 |
| 0.0922                | 0.7616                | 361.53                                                       | 20.29                                               | 22.08                      | 0.40  | 0.4583                | 0.4172                | 341.24                                   | -25.86                                              | -23.50                     | -0.59 |
| 0.1043                | 0.7529                | 358.98                                                       | 16.40                                               | 16.40                      | 0.29  | 0.4838                | 0.3970                | 344.92                                   | -24.63                                              | -21.77                     | -0.66 |
| 0.1481                | 0.7191                | 345.80                                                       | -1.15                                               | -1.32                      | -0.05 | 0.5064                | 0.3742                | 349.16                                   | -21.51                                              | -18.96                     | -0.62 |
| 0.1705                | 0.7018                | 341.30                                                       | -7.88                                               | -9.02                      | -0.22 | 0.5198                | 0.3566                | 352.06                                   | -18.42                                              | -16.45                     | -0.51 |
| 0.2163                | 0.6664                | 333.04                                                       | -20.70                                              | -22.06                     | -0.55 | 0.5328                | 0.3395                | 355.19                                   | -15.09                                              | -14.02                     | -0.41 |
| 0.2368                | 0.6403                | 331.65                                                       | -21.95                                              | -23.99                     | -0.51 | 0.5453                | 0.3230                | 358.37                                   | -11.69                                              | -11.69                     | -0.31 |
| 0.2772                | 0.5889                | 329.34                                                       | -24.01                                              | -26.21                     | -0.42 | 0.5575                | 0.3070                | 361.42                                   | -8.48                                               | -9.47                      | -0.21 |
| 0.2971                | 0.5636                | 328.37                                                       | -24.85                                              | -26.57                     | -0.36 | 0.5693                | 0.2915                | 364.28                                   | -5.44                                               | -6.35                      | -0.11 |
| 0.3169                | 0.5385                | 328.03                                                       | -25.09                                              | -26.49                     | -0.30 | 0.5807                | 0.2765                | 366.95                                   | -2.58                                               | -3.34                      | -0.01 |
| 0.3364                | 0.5136                | 327.67                                                       | -25.31                                              | -25.97                     | -0.24 | 0.6049                | 0.2570                | 371.28                                   | -0.51                                               | -0.59                      | -0.02 |
| 0.3601                | 0.4949                | 328.27                                                       | -26.98                                              | -26.98                     | -0.34 | 0.6228                | 0.2454                | 374.23                                   | 0.17                                                | 0.27                       | -0.08 |
| 0.3841                | 0.4759                | 329.62                                                       | -27.93                                              | -27.38                     | -0.43 | 0.6405                | 0.2338                | 377.14                                   | 0.86                                                | 0.64                       | -0.12 |
| 0.4084                | 0.4566                | 331.29                                                       | -28.56                                              | -27.19                     | -0.52 | 0.6581                | 0.2224                | 379.99                                   | 1.47                                                | 1.69                       | -0.17 |
| 0.4332                | 0.4370                | 333.82                                                       | -28.41                                              | -26.46                     | -0.60 | 0.6680                | 0.2087                | 381.51                                   | 3.29                                                | 3.29                       | -0.06 |
| 0.4583                | 0.4172                | 337.15                                                       | -27.49                                              | -25.23                     | -0.67 | 0.6846                | 0.1870                | 383.36                                   | 5.37                                                | 5.60                       | 0.11  |
| 0.4838                | 0.3970                | 341.00                                                       | -26.08                                              | -23.50                     | -0.74 | 0.7011                | 0.1655                | 385.34                                   | 7.56                                                | 7.59                       | 0.28  |
| 0.5064                | 0.3742                | 345.15                                                       | -23.04                                              | -20.63                     | -0.70 | 0.7175                | 0.1442                | 387.40                                   | 9.81                                                | 9.25                       | 0.45  |
| 0.5198                | 0.3566                | 348.08                                                       | -19.91                                              | -18.02                     | -0.60 | 0.7709                | 0.1050                | 395.97                                   | 12.59                                               | 11.09                      | 0.46  |
| 0.5328                | 0.3395                | 351.35                                                       | -16.44                                              | -15.48                     | -0.50 | [Bmmim                | $[BF_4](1)$           | + [Bmim][BF <sub>4</sub> ]               | (2) + cycle                                         | ohexanone (                | 3)    |
| 0.5453                | 0.3230                | 354.53                                                       | -13.05                                              | -13.05                     | -0.39 | T/K = 2               | 93.15                 |                                          |                                                     | (                          |       |
| 0.5575                | 0.3070                | 357.62                                                       | -9.79                                               | -10.71                     | -0.29 | 0.0846                | 0.7861                | 373.31                                   | 30.75                                               | 31.76                      | -0.01 |
| 0.5693                | 0.2915                | 360.62                                                       | -6.61                                               | -8.47                      | -0.19 | 0.1064                | 0.7686                | 363.32                                   | 18.85                                               | 19.97                      | -0.26 |
| 0.5807                | 0.2765                | 363.40                                                       | -3.65                                               | -4.34                      | -0.09 | 0.1286                | 0.7509                | 355.30                                   | 8.87                                                | 8.87                       | -0.51 |
| 0.6049                | 0.2570                | 367.83                                                       | -1.46                                               | -1.70                      | -0.10 | 0.1510                | 0.7330                | 347.10                                   | -1.30                                               | -1.34                      | -0.76 |

Table 3 continued

Table 3 continued

| $x_1 \qquad x_2$ | <i>x</i> <sub>2</sub> | $(C_p)_{123}/J$ | $\left(C_{\mathrm{P}}^{\mathrm{E}}\right)_{123}/\mathrm{J}$ | $(C_{\rm P}^{\rm E})_{123}/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$ |       |          | $\overline{x_1}$ $x_2$ |        | $(C_{\rm P}^{\rm E})_{123}/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$ |        |       |
|------------------|-----------------------|-----------------|-------------------------------------------------------------|-----------------------------------------------------------------|-------|----------|------------------------|--------|-----------------------------------------------------------------|--------|-------|
|                  |                       | K mol           | Exptl.                                                      | Graph                                                           | Flory |          |                        | K mol  | Exptl.                                                          | Graph  | Flory |
| 0.1737           | 0.7148                | 340.84          | -9.55                                                       | -10.68                                                          | -1.00 | 0.5558   | 0.3292                 | 358.29 | -13.62                                                          | -12.74 | -0.86 |
| 0.2200           | 0.6777                | 331.25          | -23.20                                                      | -25.82                                                          | -1.47 | 0.5685   | 0.3131                 | 361.39 | -10.54                                                          | -9.53  | -0.76 |
| 0.2411           | 0.6517                | 329.72          | -24.89                                                      | -26.09                                                          | -1.52 | 0.5808   | 0.2974                 | 364.41 | -7.51                                                           | -6.44  | -0.66 |
| 0.2826           | 0.6004                | 328.73          | -26.16                                                      | -28.53                                                          | -1.57 | 0.5928   | 0.2822                 | 367.39 | -4.54                                                           | -3.55  | -0.56 |
| 0.3032           | 0.5750                | 328.25          | -26.79                                                      | -27.88                                                          | -1.58 | 0.6171   | 0.2622                 | 372.07 | -1.90                                                           | -1.44  | -0.56 |
| 0.3236           | 0.5498                | 328.49          | -26.68                                                      | -26.68                                                          | -1.58 | 0.6347   | 0.2501                 | 375.20 | -0.70                                                           | -0.64  | -0.59 |
| 0.3677           | 0.5054                | 329.02          | -28.34                                                      | -27.12                                                          | -1.69 | 0.6522   | 0.2381                 | 378.25 | 0.44                                                            | 0.39   | -0.62 |
| 0.4165           | 0.4656                | 331.32          | -30.19                                                      | -29.30                                                          | -1.92 | 0.6695   | 0.2263                 | 381.21 | 1.48                                                            | 1.02   | -0.65 |
| 0.4413           | 0.4453                | 333.94          | -29.66                                                      | -29.41                                                          | -2.01 | 0.6800   | 0.2124                 | 383.13 | 3.51                                                            | 3.51   | -0.53 |
| 0.4666           | 0.4247                | 337.42          | -28.34                                                      | -28.96                                                          | -2.09 | 0.6974   | 0.1905                 | 385.80 | 6.14                                                            | 6.95   | -0.34 |
| 0.4921           | 0.4039                | 341.41          | -26.52                                                      | -27.96                                                          | -2.16 | 0.7148   | 0.1687                 | 388.74 | 9.01                                                            | 9.85   | -0.15 |
| 0.5152           | 0.3807                | 345.51          | -23.57                                                      | -24.62                                                          | -2.12 | 0.7320   | 0.1471                 | 391.92 | 12.14                                                           | 12.14  | 0.04  |
| 0.5292           | 0.3630                | 348.26          | -20.84                                                      | -20.84                                                          | -2.01 | 0.7563   | 0.1268                 | 396.76 | 14.99                                                           | 12.92  | 0.12  |
| 0.5427           | 0.3458                | 351.33          | -17.76                                                      | -17.15                                                          | -1.90 | 0.7848   | 0.1069                 | 400.19 | 15.37                                                           | 12.80  | 0.15  |
| 0.5558           | 0.3292                | 354.59          | -14.51                                                      | -13.63                                                          | -1.79 | T/K = 30 | 03.15                  |        |                                                                 |        |       |
| 0.5685           | 0.3131                | 357.81          | -11.31                                                      | -10.27                                                          | -1.68 | 0.0846   | 0.7861                 | 380.47 | 32.84                                                           | 31.00  | 1.04  |
| 0.5808           | 0.2974                | 360.95          | -8.16                                                       | -7.03                                                           | -1.57 | 0.1064   | 0.7686                 | 370.10 | 20.54                                                           | 20.03  | 0.86  |
| 0.5928           | 0.2822                | 364.03          | -5.09                                                       | -3.99                                                           | -1.45 | 0.1286   | 0.7509                 | 361.26 | 9.72                                                            | 9.72   | 0.67  |
| 0.6171           | 0.2622                | 368.88          | -2.27                                                       | -1.77                                                           | -1.42 | 0.1510   | 0.7330                 | 353.76 | 0.23                                                            | 0.25   | 0.49  |
| 0.6347           | 0.2501                | 372.07          | -0.99                                                       | -0.93                                                           | -1.43 | 0.1737   | 0.7148                 | 346.67 | -8.87                                                           | -8.40  | 0.31  |
| 0.6522           | 0.2381                | 375.20          | 0.22                                                        | 0.24                                                            | -1.44 | 0.2200   | 0.6777                 | 339.31 | -20.33                                                          | -21.32 | -0.04 |
| 0.6695           | 0.2263                | 378.23          | 1.35                                                        | 1.08                                                            | -1.44 | 0.2411   | 0.6517                 | 338.77 | -21.04                                                          | -22.44 | -0.03 |
| 0.6800           | 0.2124                | 380.24          | 3.46                                                        | 3.46                                                            | -1.30 | 0.2826   | 0.6004                 | 338.09 | -22.01                                                          | -24.77 | 0.01  |
| 0.6974           | 0.1905                | 383.03          | 6.20                                                        | 7.11                                                            | -1.07 | 0.3032   | 0.5750                 | 337.99 | -22.27                                                          | -24.15 | 0.04  |
| 0.7148           | 0.1687                | 385.79          | 8.90                                                        | 10.22                                                           | -0.84 | 0.3236   | 0.5498                 | 337.39 | -23.02                                                          | -23.02 | 0.08  |
| 0.7320           | 0.1471                | 389.34          | 12.40                                                       | 12.70                                                           | -0.61 | 0.3677   | 0.5054                 | 338.27 | -24.35                                                          | -23.42 | 0.01  |
| 0.7563           | 0.1268                | 394.28          | 15.37                                                       | 13.59                                                           | -0.47 | 0.4165   | 0.4656                 | 340.63 | -26.18                                                          | -25.40 | -0.20 |
| 0.7848           | 0.1069                | 397.93          | 15.97                                                       | 13.53                                                           | -0.38 | 0.4413   | 0.4453                 | 343.32 | -25.61                                                          | -25.48 | -0.29 |
| T/K = 29         | 98.15                 |                 |                                                             |                                                                 |       | 0.4666   | 0.4247                 | 346.42 | -24.69                                                          | -25.06 | -0.38 |
| 0.0846           | 0.7861                | 376.36          | 31.09                                                       | 31.36                                                           | 0.54  | 0.4921   | 0.4039                 | 350.36 | -22.94                                                          | -24.11 | -0.46 |
| 0.1064           | 0.7686                | 366.32          | 19.14                                                       | 19.94                                                           | 0.34  | 0.5152   | 0.3807                 | 354.11 | -20.36                                                          | -21.05 | -0.44 |
| 0.1286           | 0.7509                | 358.35          | 9.20                                                        | 9.20                                                            | 0.13  | 0.5292   | 0.3630                 | 356.87 | -17.62                                                          | -17.62 | -0.35 |
| 0.1510           | 0.7330                | 350.48          | -0.65                                                       | -0.67                                                           | -0.08 | 0.5427   | 0.3458                 | 359.62 | -14.87                                                          | -14.28 | -0.27 |
| 0.1737           | 0.7148                | 343.87          | -9.26                                                       | -9.70                                                           | -0.28 | 0.5558   | 0.3292                 | 362.63 | -11.88                                                          | -11.10 | -0.18 |
| 0.2200           | 0.6777                | 335.46          | -21.74                                                      | -23.30                                                          | -0.67 | 0.5685   | 0.3131                 | 365.53 | -9.00                                                           | -8.07  | -0.10 |
| 0.2411           | 0.6517                | 334.75          | -22.61                                                      | -24.52                                                          | -0.69 | 0.5808   | 0.2974                 | 368.48 | -6.04                                                           | -5.17  | -0.01 |
| 0.2826           | 0.6004                | 333.72          | -23.92                                                      | -24.93                                                          | -0.68 | 0.5928   | 0.2822                 | 371.26 | -3.28                                                           | -2.46  | 0.07  |
| 0.3032           | 0.5750                | 333.23          | -24.56                                                      | -26.30                                                          | -0.67 | 0.6171   | 0.2622                 | 375.78 | -0.81                                                           | -0.78  | 0.05  |
| 0.3236           | 0.5498                | 332.79          | -25.15                                                      | -25.15                                                          | -0.64 | 0.6347   | 0.2501                 | 378.80 | 0.27                                                            | 0.27   | 0.02  |
| 0.3677           | 0.5054                | 333.31          | -26.81                                                      | -25.59                                                          | -0.73 | 0.6522   | 0.2381                 | 381.75 | 1.30                                                            | 1.06   | -0.05 |
| 0.4165           | 0.4656                | 335.63          | -28.66                                                      | -27.72                                                          | -0.94 | 0.6695   | 0.2263                 | 384.62 | 2.25                                                            | 1.84   | -0.09 |
| 0.4413           | 0.4453                | 338.21          | -28.18                                                      | -27.83                                                          | -1.03 | 0.6800   | 0.2124                 | 386.42 | 4.15                                                            | 4.15   | 0.01  |
| 0.4666           | 0.4247                | 341.61          | -26.94                                                      | -27.41                                                          | -1.11 | 0.6974   | 0.1905                 | 388.89 | 6.56                                                            | 7.28   | 0.16  |
| 0.4921           | 0.4039                | 345.41          | -25.32                                                      | -26.45                                                          | -1.18 | 0.7148   | 0.1687                 | 391.58 | 9.19                                                            | 9.89   | 0.31  |
| 0.5152           | 0.3807                | 349.51          | -22.38                                                      | -23.25                                                          | -1.15 | 0.7320   | 0.1471                 | 394.40 | 11.94                                                           | 11.90  | 0.47  |
| 0.5292           | 0.3630                | 352.28          | -19.63                                                      | -19.63                                                          | -1.05 | 0.7563   | 0.1268                 | 398.99 | 14.54                                                           | 12.51  | 0.51  |
| 0.5427           | 0.3458                | 355.23          | -16.67                                                      | -16.10                                                          | -0.96 | 0.7848   | 0.1069                 | 402.85 | 15.33                                                           | 12.29  | 0.49  |

Thermodynamic investigations of excess heat capacities of ternary liquid mixtures containing...

| Table 3               | Stable 3 continued    |                                                               |                                                    |                                           |       | Table 3 continued     |                       |                                                    |                                                     |                                                                 |       |  |
|-----------------------|-----------------------|---------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|-------|-----------------------|-----------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|-------|--|
| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $(C_{\rm p})_{123}/{\rm J}$<br>${\rm K}^{-1}  {\rm mol}^{-1}$ | $\left(C_{\mathrm{P}}^{\mathrm{E}}\right)_{123}/.$ | $\mathbf{K}^{-1} \operatorname{mol}^{-1}$ | l     | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $x_2$ $(C_p)_{123}/J$<br>$K^{-1} \text{ mol}^{-1}$ | $\left(C_{\mathrm{P}}^{\mathrm{E}}\right)_{123}$ /J | $(C_{\rm P}^{\rm E})_{123}/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$ |       |  |
|                       |                       | K mor                                                         | Exptl.                                             | Graph                                     | Flory |                       |                       | IX IIIOI                                           | Exptl.                                              | Graph                                                           | Flory |  |
| T/K = 3               | 08.15                 |                                                               |                                                    |                                           |       | 0.3491                | 0.5181                | 355.68                                             | 34.09                                               | 33.08                                                           | 0.70  |  |
| 0.0846                | 0.7861                | 383.50                                                        | 33.47                                              | 30.69                                     | 1.12  | 0.3721                | 0.4994                | 358.12                                             | 33.36                                               | 33.36                                                           | 0.62  |  |
| 0.1064                | 0.7686                | 373.54                                                        | 21.57                                              | 20.14                                     | 0.94  | 0.3956                | 0.4803                | 360.53                                             | 32.53                                               | 33.36                                                           | 0.54  |  |
| 0.1286                | 0.7509                | 364.18                                                        | 10.22                                              | 10.22                                     | 0.77  | 0.4195                | 0.4608                | 362.56                                             | 31.27                                               | 33.10                                                           | 0.46  |  |
| 0.1510                | 0.7330                | 357.03                                                        | 1.07                                               | 1.12                                      | 0.59  | 0.4661                | 0.4183                | 366.01                                             | 28.99                                               | 31.50                                                           | 0.39  |  |
| 0.1737                | 0.7148                | 350.44                                                        | -7.54                                              | -7.20                                     | 0.42  | 0.4885                | 0.3954                | 367.31                                             | 27.90                                               | 30.20                                                           | 0.39  |  |
| 0.2200                | 0.6777                | 344.06                                                        | -18.05                                             | -20.54                                    | 0.09  | 0.5048                | 0.3800                | 368.25                                             | 26.92                                               | 29.23                                                           | 0.38  |  |
| 0.2411                | 0.6517                | 343.26                                                        | -19.02                                             | -21.59                                    | 0.11  | 0.5179                | 0.3628                | 368.96                                             | 26.80                                               | 27.98                                                           | 0.43  |  |
| 0.2826                | 0.6004                | 342.48                                                        | -20.12                                             | -22.84                                    | 0.16  | 0.5306                | 0.3460                | 369.63                                             | 26.70                                               | 26.70                                                           | 0.49  |  |
| 0.3032                | 0.5750                | 342.05                                                        | -20.71                                             | -22.22                                    | 0.20  | 0.5430                | 0.3297                | 370.01                                             | 26.30                                               | 25.39                                                           | 0.54  |  |
| 0.3236                | 0.5498                | 341.81                                                        | -21.12                                             | -21.12                                    | 0.24  | 0.5551                | 0.3138                | 370.71                                             | 26.24                                               | 24.06                                                           | 0.60  |  |
| 0.3677                | 0.5054                | 343.17                                                        | -21.98                                             | -21.48                                    | 0.18  | 0.5669                | 0.2983                | 371.34                                             | 26.13                                               | 22.72                                                           | 0.66  |  |
| 0.4165                | 0.4656                | 345.43                                                        | -23.94                                             | -23.42                                    | -0.02 | 0.5914                | 0.2780                | 372.24                                             | 23.71                                               | 20.82                                                           | 0.63  |  |
| 0.4413                | 0.4453                | 347.96                                                        | -23.54                                             | -23.50                                    | -0.11 | 0.6092                | 0.2658                | 372.79                                             | 21.46                                               | 19.60                                                           | 0.58  |  |
| 0.4666                | 0.4247                | 351.00                                                        | -22.68                                             | -23.11                                    | -0.20 | 0.6270                | 0.2538                | 373.15                                             | 19.00                                               | 18.36                                                           | 0.52  |  |
| 0.4921                | 0.4039                | 354.86                                                        | -21.03                                             | -22.22                                    | -0.28 | 0.6446                | 0.2417                | 373.40                                             | 16.49                                               | 17.08                                                           | 0.48  |  |
| 0.5152                | 0.3807                | 358.51                                                        | -18.56                                             | -19.29                                    | -0.26 | 0.6552                | 0.2273                | 373.14                                             | 15.64                                               | 15.64                                                           | 0.55  |  |
| 0.5292                | 0.3630                | 361.10                                                        | -16.00                                             | -16.00                                    | -0.17 | 0.6730                | 0.2043                | 372.83                                             | 14.15                                               | 13.30                                                           | 0.66  |  |
| 0.5427                | 0.3458                | 363.91                                                        | -13.19                                             | -12.80                                    | -0.09 | 0.7085                | 0.1585                | 371.83                                             | 10.80                                               | 8.57                                                            | 0.89  |  |
| 0.5558                | 0.3292                | 366.67                                                        | -10.46                                             | -9.76                                     | -0.01 | 0.7340                | 0.1371                | 370.63                                             | 6.18                                                | 6.32                                                            | 0.91  |  |
| 0.5685                | 0.3131                | 369.55                                                        | -7.59                                              | -6.87                                     | 0.08  | T/K = 2               | 98.15                 |                                                    |                                                     |                                                                 |       |  |
| 0.5808                | 0.2974                | 372.31                                                        | -4.84                                              | -4.10                                     | 0.16  | 0.0814                | 0.7865                | 302.40                                             | 8.62                                                | 7.22                                                            | 1.55  |  |
| 0.5928                | 0.2822                | 375.00                                                        | -2.18                                              | -1.51                                     | 0.25  | 0.1108                | 0.7626                | 312.74                                             | 14.86                                               | 13.46                                                           | 1.44  |  |
| 0.6171                | 0.2622                | 379.36                                                        | 0.12                                               | 0.15                                      | 0.22  | 0.1305                | 0.7471                | 319.23                                             | 18.52                                               | 17.28                                                           | 1.35  |  |
| 0.6347                | 0.2501                | 382.29                                                        | 1.11                                               | 1.05                                      | 0.17  | 0.1506                | 0.7313                | 326.12                                             | 22.53                                               | 20.85                                                           | 1.27  |  |
| 0.6522                | 0.2381                | 385.17                                                        | 2.05                                               | 1.77                                      | 0.12  | 0.1710                | 0.7151                | 330.64                                             | 24.14                                               | 24.14                                                           | 1.18  |  |
| 0.6695                | 0.2263                | 387.95                                                        | 2.91                                               | 2.50                                      | 0.07  | 0.1908                | 0.6949                | 334.54                                             | 25.90                                               | 26.73                                                           | 1.15  |  |
| 0.6800                | 0.2124                | 389.63                                                        | 4.68                                               | 4.68                                      | 0.16  | 0.2107                | 0.6745                | 338.54                                             | 27.75                                               | 29.00                                                           | 1.12  |  |
| 0.6974                | 0.1905                | 391.96                                                        | 6.95                                               | 7.64                                      | 0.31  | 0.2308                | 0.6539                | 342.08                                             | 29.12                                               | 30.98                                                           | 1.10  |  |
| 0.7148                | 0.1687                | 394.67                                                        | 9.58                                               | 10.08                                     | 0.46  | 0.2511                | 0.6332                | 345.75                                             | 30.60                                               | 32.67                                                           | 1.07  |  |
| 0.7320                | 0.1471                | 397.51                                                        | 12.36                                              | 11.93                                     | 0.61  | 0.2700                | 0.6089                | 348.74                                             | 32.29                                               | 33.63                                                           | 1.11  |  |
| 0.7563                | 0.1268                | 401.24                                                        | 14.08                                              | 12.44                                     | 0.64  | 0.3078                | 0.5605                | 354.51                                             | 35.43                                               | 34.79                                                           | 1.19  |  |
| 0.7848                | 0.1069                | 405.51                                                        | 15.26                                              | 12.15                                     | 0.61  | 0.3265                | 0.5364                | 357.24                                             | 36.89                                               | 34.99                                                           | 1.23  |  |
| [Bmmin                | $[BF_4](1)$           | + [Emim][BF <sub>4</sub> ]                                    | (2) + cycl                                         | opentanone                                | (3)   | 0.3491                | 0.5181                | 360.05                                             | 36.54                                               | 35.59                                                           | 1.16  |  |
| T/K = 2               | 93.15                 |                                                               |                                                    | 1                                         |       | 0.3721                | 0.4994                | 362.61                                             | 35.88                                               | 35.88                                                           | 1.10  |  |
| 0.0814                | 0.7865                | 300.34                                                        | 8.05                                               | 8.27                                      | 1.37  | 0.3956                | 0.4803                | 364.93                                             | 34.93                                               | 35.86                                                           | 1.03  |  |
| 0.1108                | 0.7626                | 310.41                                                        | 14.06                                              | 13.65                                     | 1.21  | 0.4195                | 0.4608                | 366.86                                             | 33.53                                               | 35.53                                                           | 0.96  |  |
| 0.1305                | 0.7471                | 316.47                                                        | 17.33                                              | 16.94                                     | 1.10  | 0.4661                | 0.4183                | 370.52                                             | 31.37                                               | 33.69                                                           | 0.90  |  |
| 0.1506                | 0.7313                | 323.45                                                        | 21.46                                              | 20.04                                     | 0.99  | 0.4885                | 0.3954                | 371.76                                             | 30.19                                               | 32.26                                                           | 0.90  |  |
| 0.1710                | 0.7151                | 327.77                                                        | 22.91                                              | 22.91                                     | 0.88  | 0.5048                | 0.3800                | 372.67                                             | 29.15                                               | 31.17                                                           | 0.89  |  |
| 0.1908                | 0.6949                | 331.62                                                        | 24.63                                              | 25.19                                     | 0.83  | 0.5179                | 0.3628                | 373.26                                             | 28.90                                               | 29.86                                                           | 0.94  |  |
| 0.2107                | 0.6745                | 335.29                                                        | 26.20                                              | 27.20                                     | 0.78  | 0.5306                | 0.3460                | 373.68                                             | 28.52                                               | 28.52                                                           | 1.00  |  |
| 0.2308                | 0.6539                | 338.65                                                        | 27.42                                              | 28.96                                     | 0.73  | 0.5430                | 0.3297                | 374.09                                             | 28.13                                               | 27.16                                                           | 1.06  |  |
| 0.2511                | 0.6332                | 341.98                                                        | 28.58                                              | 30.47                                     | 0.69  | 0.5551                | 0.3138                | 374.41                                             | 27.67                                               | 25.79                                                           | 1.12  |  |
| 0.2700                | 0.6089                | 344.98                                                        | 30.33                                              | 31.33                                     | 0.71  | 0.5669                | 0.2983                | 374.88                                             | 27.38                                               | 24.41                                                           | 1.17  |  |
| 0.3078                | 0.5605                | 350.71                                                        | 33.49                                              | 32.38                                     | 0.75  | 0.5914                | 0.2780                | 375.74                                             | 24.88                                               | 22.35                                                           | 1.14  |  |
| 0.3265                | 0.5364                | 353.19                                                        | 34.73                                              | 32.54                                     | 0.78  | 0.6092                | 0.2658                | 376.07                                             | 22.39                                               | 20.97                                                           | 1.08  |  |

Table 3 continued

Table 3 continued

| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $(C_{\rm p})_{123}/J_{\rm J}$ | $\left(C_{\mathrm{P}}^{\mathrm{E}}\right)_{123}$ /J | $K^{-1}$ mol <sup>-1</sup> |       | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $(C_{\rm p})_{123}/J_{\rm J}$ | $\left(C_{\mathrm{P}}^{\mathrm{E}}\right)_{123}$ /J | $K^{-1}$ mol <sup>-1</sup> |        |
|-----------------------|-----------------------|-------------------------------|-----------------------------------------------------|----------------------------|-------|-----------------------|-----------------------|-------------------------------|-----------------------------------------------------|----------------------------|--------|
|                       |                       | K mol                         | Exptl.                                              | Graph                      | Flory |                       |                       | $K^{-1} mol^{-1}$             | Exptl.                                              | Graph                      | Flory  |
| 0.6270                | 0.2538                | 376.45                        | 19.91                                               | 19.57                      | 1.02  | 0.2308                | 0.6539                | 349.15                        | 32.33                                               | 34.07                      | 1.25   |
| 0.6446                | 0.2417                | 376.80                        | 17.47                                               | 18.12                      | 0.96  | 0.2511                | 0.6332                | 353.12                        | 34.05                                               | 35.92                      | 1.23   |
| 0.6552                | 0.2273                | 376.65                        | 16.71                                               | 16.71                      | 1.03  | 0.2700                | 0.6089                | 356.32                        | 35.91                                               | 37.11                      | 1.27   |
| 0.6730                | 0.2043                | 376.33                        | 15.19                                               | 14.44                      | 1.13  | 0.3078                | 0.5605                | 362.42                        | 39.33                                               | 38.71                      | 1.36   |
| 0.7085                | 0.1585                | 374.93                        | 11.38                                               | 10.00                      | 1.35  | 0.3265                | 0.5364                | 365.08                        | 40.67                                               | 39.13                      | 1.41   |
| 0.7340                | 0.1371                | 373.89                        | 6.88                                                | 7.78                       | 1.34  | 0.3491                | 0.5181                | 368.28                        | 40.66                                               | 39.71                      | 1.34   |
| T/K = 3               | 03.15                 |                               |                                                     |                            |       | 0.3721                | 0.4994                | 370.81                        | 39.92                                               | 39.92                      | 1.27   |
| 0.0814                | 0.7865                | 304.98                        | 9.43                                                | 8.59                       | 1.64  | 0.3956                | 0.4803                | 373.29                        | 39.06                                               | 39.79                      | 1.20   |
| 0.1108                | 0.7626                | 315.27                        | 15.59                                               | 14.68                      | 1.52  | 0.4195                | 0.4608                | 375.66                        | 38.05                                               | 39.30                      | 1.13   |
| 0.1305                | 0.7471                | 321.75                        | 19.22                                               | 18.40                      | 1.43  | 0.4661                | 0.4183                | 378.99                        | 35.47                                               | 37.26                      | 1.06   |
| 0.1506                | 0.7313                | 328.84                        | 23.39                                               | 21.88                      | 1.34  | 0.4885                | 0.3954                | 380.33                        | 34.33                                               | 35.84                      | 1.07   |
| 0.1710                | 0.7151                | 333.46                        | 25.08                                               | 25.08                      | 1.25  | 0.5048                | 0.3800                | 381.34                        | 33.35                                               | 34.70                      | 1.06   |
| 0.1908                | 0.6949                | 337.44                        | 26.89                                               | 27.64                      | 1.22  | 0.5179                | 0.3628                | 381.78                        | 32.92                                               | 33.60                      | 1.12   |
| 0.2107                | 0.6745                | 341.51                        | 28.81                                               | 29.90                      | 1.19  | 0.5306                | 0.3460                | 382.16                        | 32.48                                               | 32.48                      | 1.18   |
| 0.2308                | 0.6539                | 345.13                        | 30.24                                               | 31.87                      | 1.16  | 0.5430                | 0.3297                | 382.66                        | 32.16                                               | 31.36                      | 1.24   |
| 0.2511                | 0.6332                | 348.89                        | 31.77                                               | 33.56                      | 1.14  | 0.5551                | 0.3138                | 383.15                        | 31.85                                               | 30.23                      | 1.31   |
| 0.2700                | 0.6089                | 351.92                        | 33.49                                               | 34.57                      | 1.18  | 0.5669                | 0.2983                | 383.58                        | 31.50                                               | 29.11                      | 1.37   |
| 0.3078                | 0.5605                | 357.75                        | 36.66                                               | 35.87                      | 1.26  | 0.5914                | 0.2780                | 384.48                        | 28.98                                               | 26.95                      | 1.33   |
| 0.3265                | 0.5364                | 360.53                        | 38.15                                               | 36.13                      | 1.31  | 0.6092                | 0.2658                | 385.01                        | 26.64                                               | 25.36                      | 1.27   |
| 0.3491                | 0.5181                | 363.40                        | 37.83                                               | 36.73                      | 1.23  | 0.6270                | 0.2538                | 385.53                        | 24.26                                               | 23.71                      | 1.20   |
| 0.3721                | 0.4994                | 365.82                        | 37.01                                               | 37.01                      | 1.16  | 0.6446                | 0.2417                | 385.86                        | 21.76                                               | 22.03                      | 1.14   |
| 0.3956                | 0.4803                | 368.21                        | 36.10                                               | 37.00                      | 1.09  | 0.6552                | 0.2273                | 385.73                        | 21.00                                               | 21.00                      | 1.22   |
| 0.4195                | 0.4608                | 370.36                        | 34.90                                               | 36.67                      | 1.02  | 0.6730                | 0.2043                | 385.33                        | 19.36                                               | 19.32                      | 1.33   |
| 0.4661                | 0.4183                | 373.90                        | 32.57                                               | 34.92                      | 0.95  | 0.7085                | 0.1585                | 383.48                        | 15.03                                               | 16.27                      | 1.56   |
| 0.4885                | 0.3954                | 375.32                        | 31.55                                               | 33.55                      | 0.96  | 0.7340                | 0.1371                | 382.27                        | 10.30                                               | 14.32                      | 1.56   |
| 0.5048                | 0.3800                | 376.40                        | 30.65                                               | 32.51                      | 0.95  | [Bmmim                | $[BF_4](1)$           | + [Emim][BF <sub>4</sub> ]    | (2) + cycle                                         | ohexanone (                | 3)     |
| 0.5179                | 0.3628                | 376.97                        | 30.36                                               | 31.26                      | 1.01  | T/K = 2               | 93.15                 |                               |                                                     | ,                          | ,<br>, |
| 0.5306                | 0.3460                | 377.40                        | 29.98                                               | 29.98                      | 1.07  | 0.0959                | 0.7916                | 309.47                        | 10.03                                               | 11.64                      | 1.72   |
| 0.5430                | 0.3297                | 378.02                        | 29.80                                               | 28.69                      | 1.13  | 0.1161                | 0.7751                | 313.75                        | 11.62                                               | 12.91                      | 1.61   |
| 0.5551                | 0.3138                | 378.58                        | 29.57                                               | 27.38                      | 1.19  | 0.1576                | 0.7413                | 321.69                        | 14.02                                               | 14.47                      | 1.36   |
| 0.5669                | 0.2983                | 378.98                        | 29.20                                               | 26.05                      | 1.25  | 0.1780                | 0.7204                | 324.89                        | 15.05                                               | 15.05                      | 1.30   |
| 0.5914                | 0.2780                | 379.86                        | 26.69                                               | 24.01                      | 1.22  | 0.1986                | 0.6994                | 328.06                        | 16.00                                               | 15.59                      | 1.24   |
| 0.6092                | 0.2658                | 380.35                        | 24.33                                               | 22.64                      | 1.16  | 0.2194                | 0.6781                | 331.00                        | 16.72                                               | 16.10                      | 1.18   |
| 0.6270                | 0.2538                | 380.84                        | 21.94                                               | 21.23                      | 1.09  | 0.2404                | 0.6567                | 333.79                        | 17.26                                               | 16.56                      | 1.12   |
| 0.6446                | 0.2417                | 381.11                        | 19.40                                               | 19.78                      | 1.04  | 0.2603                | 0.6320                | 336.22                        | 18.11                                               | 17.22                      | 1.13   |
| 0.6552                | 0.2273                | 380.73                        | 18.40                                               | 18.40                      | 1.11  | 0.2801                | 0.6073                | 338.67                        | 19.01                                               | 17.81                      | 1.14   |
| 0.6730                | 0.2043                | 380.43                        | 16.88                                               | 16.17                      | 1.22  | 0.2999                | 0.5827                | 341.06                        | 19.84                                               | 18.33                      | 1.16   |
| 0.7085                | 0.1585                | 378.77                        | 12.78                                               | 11.76                      | 1.44  | 0.3197                | 0.5581                | 343.53                        | 20.74                                               | 18.77                      | 1.17   |
| 0.7340                | 0.1371                | 377.74                        | 8.26                                                | 9.50                       | 1.44  | 0.3429                | 0.5387                | 346.02                        | 20.20                                               | 18.76                      | 1.07   |
| T/K = 3               | 08.15                 |                               |                                                     |                            |       | 0.3664                | 0.5191                | 348.27                        | 19.38                                               | 18.71                      | 0.98   |
| 0.0814                | 0.7865                | 306.97                        | 9.67                                                | 7.99                       | 1.72  | 0.3904                | 0.4990                | 350.66                        | 18.63                                               | 18.63                      | 0.88   |
| 0.1108                | 0.7626                | 317.70                        | 16.23                                               | 14.92                      | 1.60  | 0.4149                | 0.4786                | 352.79                        | 17.55                                               | 18.50                      | 0.79   |
| 0.1305                | 0.7471                | 325.23                        | 20.88                                               | 19.12                      | 1.51  | 0.4398                | 0.4577                | 355.06                        | 16.57                                               | 18.34                      | 0.70   |
| 0.1506                | 0.7313                | 331.05                        | 23.77                                               | 23.02                      | 1.42  | 0.4628                | 0.4343                | 357.26                        | 16.30                                               | 18.24                      | 0.68   |
| 0.1710                | 0.7151                | 336.82                        | 26.58                                               | 26.58                      | 1.34  | 0.5030                | 0.3945                | 361.00                        | 15.58                                               | 17.86                      | 0.65   |
| 0.1908                | 0.6949                | 341.02                        | 28.59                                               | 29.41                      | 1.31  | 0.5171                | 0.3767                | 362.53                        | 16.03                                               | 17.72                      | 0.70   |
| 0.2107                | 0.6745                | 345.33                        | 30.71                                               | 31.90                      | 1.28  | 0.5307                | 0.3594                | 363.91                        | 16.38                                               | 17.53                      | 0.74   |

Thermodynamic investigations of excess heat capacities of ternary liquid mixtures containing...

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| 0.5441 $0.3426$ $365.29$ $16.72$ $17.28$ $0.79$ $0.1161$ $0.7751$ $319.32$ $13.66$ $14.75$ $0.5571$ $0.3261$ $366.67$ $17.12$ $16.99$ $0.84$ $0.1576$ $0.7413$ $327.57$ $16.28$ $16.82$ $0.5697$ $0.3101$ $367.86$ $17.36$ $16.66$ $0.89$ $0.1780$ $0.7204$ $331.14$ $17.61$ $17.61$ $0.5780$ $0.2889$ $369.07$ $15.95$ $0.84$ $0.1986$ $0.6994$ $334.36$ $18.56$ $18.33$ $0.6128$ $0.2760$ $370.99$ $14.61$ $15.43$ $0.78$ $0.2194$ $0.6781$ $337.59$ $19.52$ $19.01$ $0.6679$ $0.2357$ $374.48$ $12.06$ $13.82$ $0.73$ $0.2603$ $0.6320$ $343.18$ $22.15$ $21.07$ $0.6799$ $0.1883$ $377.06$ $11.67$ $11.67$ $0.92$ $0.2999$ $0.5827$ $38.43$ $23.17$ $21.66$ $0.7142$ $0.1424$ $379.55$ $9.35$ $8.85$ $1.01$ $0.3197$ $0.5581$ $35.00$ $22.37$ $22.16$ $0.7144$ $377.55$ $9.35$ $8.85$ $1.01$ $0.3197$ $0.5581$ $35.09$ $22.17$ $22.16$ $0.7143$ $31.20$ $11.00$ $12.51$ $1.80$ $0.4149$ $0.4786$ $366.69$ $21.11$ $21.93$ $0.7151$ $316.53$ $12.79$ $13.55$ $1.87$ $0.3946$ $45171$ $35.89$ $22.78$ $22.16$ $0.7161$ <td< th=""><th>lory</th></td<>                                                                                                                                                                                       | lory |
| 0.5571         0.3261         366.67         17.12         16.99         0.84         0.1576         0.7413         327.57         16.28         16.82           0.5697         0.3101         367.86         17.36         16.66         0.89         0.1780         0.7204         331.41         17.61         17.61           0.5128         0.2760         370.99         14.61         15.43         0.78         0.2194         0.6571         337.59         19.52         19.01           0.6128         0.2760         370.99         14.61         15.43         0.78         0.2203         343.18         21.15         20.39           0.6789         0.2120         375.86         11.96         1.82         0.73         0.2603         0.6320         343.18         21.15         21.07           0.6799         0.1833         377.06         11.67         1.67         0.22         0.299         0.5387         35.40         23.43         22.15         21.07           0.7428         0.1424         379.55         9.35         8.85         1.01         0.3429         0.5387         35.40         23.43         22.18           0.7730         0.1203         381.88         7.33 <t< td=""><td>2.05</td></t<> | 2.05 |
| 0.5697 $0.3101$ $367.86$ $17.36$ $16.66$ $0.89$ $0.1780$ $0.7204$ $331.14$ $17.61$ $17.61$ $0.5948$ $0.2889$ $360.70$ $15.95$ $0.84$ $0.1986$ $0.6994$ $331.43$ $18.56$ $18.33$ $0.6128$ $0.2760$ $370.99$ $14.61$ $15.43$ $0.78$ $0.2194$ $0.6781$ $337.59$ $19.02$ $19.01$ $0.6370$ $0.2557$ $374.48$ $12.06$ $13.82$ $0.73$ $0.6673$ $345.78$ $22.15$ $21.07$ $0.6979$ $0.183$ $37.56$ $11.67$ $0.92$ $0.2999$ $0.5827$ $348.43$ $23.17$ $21.66$ $0.7169$ $0.1647$ $377.95$ $11.65$ $0.32$ $0.197$ $0.5881$ $350.40$ $22.18$ $22.16$ $0.7160$ $0.1203$ $381.88$ $7.33$ $7.29$ $0.97$ $0.3664$ $0.5191$ $355.89$ $22.78$ $22.16$ $0.776$ $312.02$ $11.00$ $12.51$ $1.96$ $0.3449$ $0.4936$ $360.512$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.84 |
| 0.5948 $0.2889$ $369.70$ $15.95$ $15.95$ $0.84$ $0.1986$ $0.6944$ $334.36$ $18.56$ $18.33$ $0.6128$ $0.7700$ $770.99$ $14.61$ $15.43$ $0.78$ $0.2194$ $0.6781$ $337.59$ $19.52$ $19.01$ $0.6599$ $0.2327$ $374.48$ $12.06$ $13.82$ $0.73$ $0.6203$ $434.18$ $21.15$ $20.391$ $0.6789$ $0.2120$ $375.86$ $11.96$ $12.83$ $0.82$ $0.2999$ $0.5827$ $348.43$ $23.17$ $21.66$ $0.7160$ $0.1647$ $377.95$ $11.05$ $10.32$ $1.01$ $0.3197$ $0.581$ $35.39$ $22.08$ $22.15$ $0.7428$ $0.1424$ $379.55$ $9.35$ $8.85$ $10.10$ $0.3429$ $0.5387$ $35.39$ $22.08$ $22.08$ $0.7730$ $0.1203$ $81.88$ $7.33$ $7.29$ $0.97$ $0.3664$ $0.5191$ $355.38$ $22.08$ $22.08$ $0.7730$ $0.1203$ $81.88$ $7.33$ $12.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.79 |
| 0.6128 $0.2760$ $370.99$ $14.61$ $15.43$ $0.78$ $0.2194$ $0.6781$ $337.59$ $19.52$ $19.01$ $0.6307$ $0.2632$ $372.33$ $13.34$ $14.90$ $0.72$ $0.2404$ $0.6567$ $340.49$ $20.10$ $19.62$ $0.6789$ $0.2120$ $375.86$ $11.96$ $12.83$ $0.82$ $0.2801$ $0.6073$ $345.78$ $22.15$ $21.07$ $0.6799$ $0.1843$ $377.06$ $11.67$ $10.32$ $0.2999$ $0.5827$ $384.43$ $22.17$ $22.15$ $0.7428$ $0.1424$ $379.55$ $9.35$ $8.85$ $1.01$ $0.3429$ $0.5827$ $38.43$ $22.18$ $22.18$ $0.7160$ $0.1203$ $381.88$ $7.33$ $7.29$ $0.97$ $0.5664$ $0.5191$ $355.89$ $22.78$ $22.08$ $0.7916$ $312.02$ $11.00$ $12.51$ $1.96$ $0.4149$ $0.4757$ $362.82$ $19.33$ $21.71$ $0.751$ $316.53$ $12.79$ $13.95$ $1.87$ $0.4398$ <td>1.75</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.75 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.71 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.67 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.70 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.74 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.77 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.81 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.71 |
| T/K = 298.150.39040.4990358.3822.0822.080.09590.7916312.0211.0012.511.960.41490.4786360.6921.1121.930.11610.7751316.5312.7913.951.870.43980.4577362.8219.9321.710.15760.7413324.5815.2415.811.680.46280.4343365.1219.7021.540.17800.7204328.0516.5016.501.640.50300.3945368.8018.8120.990.19860.6994331.1817.3917.151.600.51710.3767370.2619.1520.770.21940.6781334.3318.2817.751.560.53010.3594371.6319.4520.500.24040.6567337.2418.9018.301.530.54410.3426372.8319.5720.170.26030.6307339.7619.8119.021.560.55710.3261374.1219.8419.790.28010.6073342.3020.7719.661.590.56970.3101375.1319.8619.370.29990.5827344.8921.7520.211.620.59480.2889377.0918.5018.500.31970.5581347.3122.5720.671.650.61280.2760378.2717.0117.860.34290.5387349.7721.9620.691.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.62 |
| 0.0959 $0.7916$ $312.02$ $11.00$ $12.51$ $1.96$ $0.4149$ $0.4786$ $360.69$ $21.11$ $21.93$ $0.1161$ $0.7751$ $316.53$ $12.79$ $13.95$ $1.87$ $0.4398$ $0.4577$ $362.82$ $19.93$ $21.71$ $0.1576$ $0.7413$ $324.58$ $15.24$ $15.81$ $1.68$ $0.4628$ $0.4343$ $365.12$ $19.70$ $21.54$ $0.1780$ $0.7204$ $328.05$ $16.50$ $16.50$ $1.64$ $0.5030$ $0.3945$ $368.80$ $18.81$ $20.99$ $0.1986$ $0.6994$ $331.18$ $17.39$ $17.15$ $1.60$ $0.5171$ $0.3767$ $370.26$ $19.15$ $20.77$ $0.2194$ $0.6781$ $334.33$ $18.28$ $17.75$ $1.56$ $0.5307$ $0.3594$ $371.63$ $19.45$ $20.50$ $0.2404$ $0.6567$ $337.24$ $18.90$ $18.30$ $1.53$ $0.5441$ $0.3426$ $372.83$ $19.57$ $20.17$ $0.2603$ $0.6320$ $339.76$ $19.81$ $19.02$ $1.56$ $0.5571$ $0.3261$ $374.12$ $19.84$ $19.79$ $0.2801$ $0.6073$ $342.30$ $20.77$ $19.66$ $1.59$ $0.5697$ $0.3101$ $375.13$ $19.86$ $19.37$ $0.2999$ $0.5827$ $344.89$ $21.75$ $20.21$ $1.62$ $0.5948$ $0.2889$ $377.09$ $18.50$ $18.50$ $0.3142$ $0.5581$ $347.31$ $22.57$ $20.67$ $1.65$ $0.6128$ $0.2760$ <                                                                                                                                                                                                         | 1.53 |
| 0.1161 $0.7751$ $316.53$ $12.79$ $13.95$ $1.87$ $0.4398$ $0.4577$ $362.82$ $19.93$ $21.71$ $0.1576$ $0.7413$ $324.58$ $15.24$ $15.81$ $1.68$ $0.4628$ $0.4343$ $365.12$ $19.70$ $21.54$ $0.1780$ $0.7204$ $328.05$ $16.50$ $16.50$ $1.64$ $0.5030$ $0.3945$ $368.80$ $18.81$ $20.99$ $0.1986$ $0.6994$ $331.18$ $17.39$ $17.15$ $1.60$ $0.5171$ $0.3767$ $370.26$ $19.15$ $20.77$ $0.2194$ $0.6781$ $334.33$ $18.28$ $17.75$ $1.56$ $0.5307$ $0.3594$ $371.63$ $19.45$ $20.50$ $0.2404$ $0.6567$ $337.24$ $18.90$ $18.30$ $1.53$ $0.5441$ $0.3426$ $372.83$ $19.57$ $20.17$ $0.2603$ $0.6320$ $339.76$ $19.81$ $19.02$ $1.56$ $0.5571$ $0.3261$ $374.12$ $19.84$ $19.79$ $0.2801$ $0.6073$ $342.30$ $20.77$ $19.66$ $1.59$ $0.5697$ $0.3101$ $375.13$ $19.86$ $19.37$ $0.2999$ $0.5827$ $344.89$ $21.75$ $20.21$ $1.62$ $0.5948$ $0.2889$ $377.09$ $18.50$ $18.50$ $0.3197$ $0.5581$ $347.31$ $22.57$ $20.67$ $1.65$ $0.6128$ $0.2760$ $378.27$ $17.01$ $17.86$ $0.3429$ $0.5387$ $349.77$ $21.96$ $20.69$ $1.57$ $0.6307$ $0.2632$ <                                                                                                                                                                                                         | 1.43 |
| 0.1576 $0.7413$ $324.58$ $15.24$ $15.81$ $1.68$ $0.4628$ $0.4343$ $365.12$ $19.70$ $21.54$ $0.1780$ $0.7204$ $328.05$ $16.50$ $16.50$ $1.64$ $0.5030$ $0.3945$ $368.80$ $18.81$ $20.99$ $0.1986$ $0.6994$ $331.18$ $17.39$ $17.15$ $1.60$ $0.5171$ $0.3767$ $370.26$ $19.15$ $20.77$ $0.2194$ $0.6781$ $334.33$ $18.28$ $17.75$ $1.56$ $0.5307$ $0.3594$ $371.63$ $19.45$ $20.50$ $0.2404$ $0.6567$ $337.24$ $18.90$ $18.30$ $1.53$ $0.5441$ $0.3426$ $372.83$ $19.57$ $20.17$ $0.2603$ $0.6320$ $339.76$ $19.81$ $19.02$ $1.56$ $0.5571$ $0.3261$ $374.12$ $19.84$ $19.79$ $0.2801$ $0.6073$ $342.30$ $20.77$ $19.66$ $1.59$ $0.5697$ $0.3101$ $375.13$ $19.86$ $19.37$ $0.2999$ $0.5827$ $344.89$ $21.75$ $20.21$ $1.62$ $0.5948$ $0.2889$ $377.09$ $18.50$ $18.50$ $0.3197$ $0.5581$ $347.31$ $22.57$ $20.67$ $1.65$ $0.6128$ $0.2760$ $378.27$ $17.01$ $17.86$ $0.3429$ $0.5387$ $349.77$ $21.96$ $20.69$ $1.57$ $0.6307$ $0.2632$ $379.53$ $15.61$ $17.21$ $0.364$ $0.5191$ $352.21$ $21.29$ $20.66$ $1.48$ $0.6599$ $0.2357$ <t< td=""><td>1.34</td></t<>                                                                                                                                                                               | 1.34 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.33 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.29 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.34 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.40 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.44 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.50 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.55 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.49 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.41 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.34 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.33 |
| $            0.4149  0.4786  356.94 \qquad 19.60  20.44 \qquad 1.31 \qquad 0.6979  0.1883  383.94 \qquad 13.43 \qquad 13.43 \\ 0.4398  0.4577  359.05 \qquad 18.44 \qquad 20.25 \qquad 1.23 \qquad 0.7169  0.1647  384.70 \qquad 12.63 \qquad 11.92 \\ 0.4628  0.4343  361.26 \qquad 18.13 \qquad 20.10 \qquad 1.22 \qquad 0.7428  0.1424  386.19 \qquad 10.75  10.25 \\ 0.5030  0.3945  365.04 \qquad 17.37  19.62 \qquad 1.19 \qquad 0.7730  0.1203  388.42 \qquad 8.57  8.48 \\ 0.5171  0.3767  366.44 \qquad 17.67 \qquad 19.42 \qquad 1.24 \qquad T/K = 308.15 \\ 0.5307  0.3594  367.92 \qquad 18.10 \qquad 19.18 \qquad 1.28  0.0959  0.7916  317.18 \qquad 12.37  13.15 \\ 0.5441  0.3426  369.15 \qquad 18.27  18.87  1.33  0.1161  0.7751  321.84 \qquad 14.27  15.01 \\             $                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.41 |
| $            0.4398  0.4577  359.05 \qquad 18.44  20.25 \qquad 1.23 \qquad 0.7169  0.1647  384.70 \qquad 12.63 \qquad 11.92 \\            0.4628  0.4343  361.26 \qquad 18.13 \qquad 20.10 \qquad 1.22 \qquad 0.7428  0.1424  386.19 \qquad 10.75 \qquad 10.25 \\            0.5030  0.3945  365.04 \qquad 17.37  19.62 \qquad 1.19 \qquad 0.7730  0.1203  388.42 \qquad 8.57 \qquad 8.48 \\            0.5171  0.3767  366.44 \qquad 17.67 \qquad 19.42 \qquad 1.24 \qquad T/K = 308.15 \\            0.5307  0.3594  367.92 \qquad 18.10 \qquad 19.18 \qquad 1.28  0.0959  0.7916  317.18 \qquad 12.37  13.15 \\            0.5441  0.3426  369.15 \qquad 18.27  18.87  1.33  0.1161  0.7751  321.84 \qquad 14.27  15.01 \\            $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.50 |
| 0.4628       0.4343       361.26       18.13       20.10       1.22       0.7428       0.1424       386.19       10.75       10.25         0.5030       0.3945       365.04       17.37       19.62       1.19       0.7730       0.1203       388.42       8.57       8.48         0.5171       0.3767       366.44       17.67       19.42       1.24 <i>T/K</i> = 308.15       1       12.37       13.15         0.5307       0.3594       367.92       18.10       19.18       1.28       0.0959       0.7916       317.18       12.37       13.15         0.5441       0.3426       369.15       18.27       18.87       1.33       0.1161       0.7751       321.84       14.27       15.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.59 |
| 0.5030       0.3945       365.04       17.37       19.62       1.19       0.7730       0.1203       388.42       8.57       8.48         0.5171       0.3767       366.44       17.67       19.42       1.24 <i>T/K</i> = 308.15       10.5307       0.3594       367.92       18.10       19.18       1.28       0.0959       0.7916       317.18       12.37       13.15         0.5441       0.3426       369.15       18.27       18.87       1.33       0.1161       0.7751       321.84       14.27       15.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.56 |
| 0.5171         0.3767         366.44         17.67         19.42         1.24         T/K = 308.15           0.5307         0.3594         367.92         18.10         19.18         1.28         0.0959         0.7916         317.18         12.37         13.15           0.5441         0.3426         369.15         18.27         18.87         1.33         0.1161         0.7751         321.84         14.27         15.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.48 |
| 0.5307         0.3594         367.92         18.10         19.18         1.28         0.0959         0.7916         317.18         12.37         13.15           0.5441         0.3426         369.15         18.27         18.87         1.33         0.1161         0.7751         321.84         14.27         15.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| 0.5441 0.3426 369.15 18.27 18.87 1.33 0.1161 0.7751 321.84 14.27 15.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.24 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.14 |
| 0 5571 0 3261 370 47 18 58 18 52 1 38 0 1576 0 7413 330 37 17 12 17 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.93 |
| 0.5697 0.3101 371.51 18.65 18.13 1.43 0.1780 0.7204 334.03 18.53 18.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.89 |
| 0.5948 0.2889 373.47 17.32 17.32 1.37 0.1986 0.6994 337.36 19.56 19.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.85 |
| 0.6128 0.2760 374.67 15.87 16.74 1.30 0.2194 0.6781 340.69 20.59 20.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.81 |
| 0.6307 0.2632 376.01 14.57 16.14 1.24 0.2404 0.6567 343.67 21.24 20.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.77 |
| 0.6599 0.2357 378.09 13.18 14.93 1.23 0.2603 0.6320 346.55 22.45 21.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.81 |
| 0.6789 0.2120 379.39 12.95 13.82 1.31 0.2801 0.6073 349.21 23.48 22.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.85 |
| 0.6979 0.1883 380.51 12.55 12.55 1.39 0.2999 0.5827 351.80 24.42 23.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 80 |
| 0.7169 0.1647 381.26 11.76 11.08 1.47 0.3197 0.5581 354.18 25.16 23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.07 |
| 0.7428 0.1424 382.92 10.08 9.49 1.45 0.3429 0.5387 357.00 24.86 23.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.93 |
| 0.7730 0.1203 385.21 7.97 7.80 1.37 0.3664 0.5191 359.42 24.12 23.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 74 |
| T/K = 303.15 0.3904 0.4900 361.97 23.46 23.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.64 |
| 0.0959 0.7916 314.76 11.84 12.19 2.15 0.4149 0.4786 364.32 22.50 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.55 |

Table 3 continued

| <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $(C_{\rm p})_{123}/{\rm J}$<br>$K^{-1}$ mol <sup>-1</sup> | $\left(C_{\mathrm{P}}^{\mathrm{E}}\right)_{123}/\mathrm{J}$ | $\mathrm{K}^{-1} \mathrm{mol}^{-1}$ |       |
|-----------------------|-----------------------|-----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|-------|
| _                     |                       | K IIIOI                                                   | Exptl.                                                      | Graph                               | Flory |
| 0.4398                | 0.4577                | 366.47                                                    | 21.32                                                       | 22.98                               | 1.46  |
| 0.4628                | 0.4343                | 368.66                                                    | 20.94                                                       | 22.73                               | 1.44  |
| 0.5030                | 0.3945                | 372.30                                                    | 19.96                                                       | 21.03                               | 1.41  |
| 0.5171                | 0.3767                | 373.69                                                    | 20.22                                                       | 21.75                               | 1.46  |
| 0.5307                | 0.3594                | 375.10                                                    | 20.55                                                       | 21.42                               | 1.52  |
| 0.5441                | 0.3426                | 376.33                                                    | 20.68                                                       | 21.05                               | 1.57  |
| 0.5571                | 0.3261                | 377.46                                                    | 20.77                                                       | 20.63                               | 1.62  |
| 0.5697                | 0.3101                | 378.50                                                    | 20.80                                                       | 20.17                               | 1.67  |
| 0.5948                | 0.2889                | 380.23                                                    | 19.19                                                       | 19.19                               | 1.61  |
| 0.6128                | 0.2760                | 381.59                                                    | 17.87                                                       | 18.47                               | 1.53  |
| 0.6307                | 0.2632                | 382.76                                                    | 16.36                                                       | 17.73                               | 1.46  |
| 0.6599                | 0.2357                | 384.80                                                    | 14.87                                                       | 15.34                               | 1.44  |
| 0.6789                | 0.2120                | 386.04                                                    | 14.53                                                       | 15.19                               | 1.53  |
| 0.6979                | 0.1883                | 386.97                                                    | 13.90                                                       | 13.90                               | 1.62  |
| 0.7169                | 0.1647                | 387.62                                                    | 12.97                                                       | 12.45                               | 1.71  |
| 0.7428                | 0.1424                | 389.16                                                    | 11.11                                                       | 10.80                               | 1.68  |
| 0.7730                | 0.1203                | 391.42                                                    | 8.92                                                        | 9.02                                | 1.59  |

Standard uncertainties, *u*, are  $u(C_P)_{123} = \pm 0.8\%$ ; *u*  $(C_P^E)_{123} = \pm 1.1\%$ ; *u* (*T*) (DSC) =  $\pm 0.02$  K

$$\sigma(C_{\rm P}^{\rm E})_{123} = \left\{ \left[ \sum (C_{\rm P}^{\rm E})_{123} - (C_{\rm P}^{\rm E})_{123\{calc.\,{\rm Eq.}(2)\}} \right]^2 / (m-n) \right\}^{0.5}$$
(3)

where *m* is the number of data points and *n* is the number of ternary adjustable parameters of Eq. (2), which are presented in Table 4. It was found that Redlich–Kister equation represents satisfactorily the experimental  $(C_P^E)_{123}$  for the examined mixtures. The various surfaces generated by  $(C_P^E)_{123}$  values of the studied mixtures at 298.15 K are shown in Figs. 1–4.

# Discussion

The measured  $(C_{\rm P})_{123}$  data for [Bmmim][BF<sub>4</sub>] (1) + [Bmim][BF<sub>4</sub>] or [Emim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) mixtures at (293.15, 298.15, 303.15 and 308.15) K are not available in the literature with which the observed data can be compared. The  $(C_{\rm P}^{\rm E})_{123}$  data of [Bmmim][BF<sub>4</sub>] (1) + [Emim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) are positive over entire composition range of (1) and (2) components of the mixtures. However, the sign as well as magnitude of  $(C_{\rm P}^{\rm E})_{123}$  values for [Bmmim][BF<sub>4</sub>] (1) + [Bmim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) mixtures are dictated by the relative proportion of the constituents. The  $(C_{\rm P}^{\rm E})_{123}$  data of mixture indicate the variation of mixture entropy with that of ideal system [46]. The  $(C_P^E)_{123}$  data of  $[Bmmim][BF_4](1) + [Emim][BF_4](2) + cyclopentanone$ or cyclohexanone (3) suggest the contribution to  $(C_{\rm P}^{\rm E})_{123}$ due to the formation of 1:2:3 molecular complex (possessing non-random structure) in mixed state far outweighs the contribution due to the destruction of molecular entities of [Bmmim][BF<sub>4</sub>] or [Emim][BF<sub>4</sub>] or cyclopentanone or cyclohexanone which in turn enhance randomness and increase in entropy of the mixture. Further,  $(C_{\rm P}^{\rm E})_{123}$  values of  $[Bmmim][BF_4]$  (1) +  $[Bmim][BF_4]$  (2) + cyclohexanone (3) mixture are higher than those of  $[Bmmim][BF_4]$  $(1) + [Bmim][BF_4]$  (2) + cyclopentanone (3) mixture which in turn indicate strong interactions between the cyclohexanone and [Bmmim][BF<sub>4</sub>]: [Bmim][BF<sub>4</sub>] molecular entity as compared to cyclopentanone. This may be due to reason that cyclohexanone is more basic in nature and possess chair form [47] and thus can interact strongly and packed efficiently with [Bmmim][BF<sub>4</sub>]: [Bmim][BF<sub>4</sub>] molecular entity [11].

The  $(C_P^E)_{123}$  values of [Bmmim][BF<sub>4</sub>] (1) + [Bmim] [BF<sub>4</sub>] or [Emim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) mixtures suggest strong interactions between cyclopentanone or cyclohexanone and [Bmmim][BF<sub>4</sub>]: [Emim] [BF<sub>4</sub>] as compared to [Bmmim][BF<sub>4</sub>]: [Bmim][BF<sub>4</sub>] molecular entity. It may be due to the presence of bulky –CH<sub>3</sub> group in [Bmim][BF<sub>4</sub>] which in turn restricts the approach of cyclopentanone or cyclohexanone toward [Bmmim][BF<sub>4</sub>]: [Bmim][BF<sub>4</sub>] molecular entity. The  $\partial (C_P^E)_{123}/\partial T$  for the studied ternary mixtures is positive indicating the rupture of interactions among molecular entities [Bmmim][BF<sub>4</sub>] or [Bmim][BF<sub>4</sub>] or [Emim][BF<sub>4</sub>] or cyclopentanone or cyclohexanone is more difficult in pure state as compared to mixed state [48].

# Graph theory

The Moelwyn–Huggins concept [49, 50] of interaction between the surfaces of components of [Bmmim][BF<sub>4</sub>] (1) + [Bmim][BF<sub>4</sub>] or [Emim][BF<sub>4</sub>] (2); [Bmmim][BF<sub>4</sub>] or [Bmim][BF<sub>4</sub>] (1) + cyclopentanone or cyclohexanone (2) binary mixtures has been successfully utilized (taking into consideration the topology of the components of the mixture) to determine excess molar volumes,  $V^{\rm E}$ , excess isentropic compressibilities, ( $\kappa_{\rm S}^{\rm E}$ ), excess heat capacities,  $C_{\rm P}^{\rm E}$ , and excess molar enthalpies,  $H^{\rm E}$  of (1 + 2) mixtures. The analyses of  $V^{\rm E}$ , ( $\kappa_{\rm S}^{\rm E}$ ),  $C_{\rm P}^{\rm E}$  and  $H^{\rm E}$  data in terms of Moelwyn–Huggins concept (Graph theory), IR and quantum mechanical studies have revealed that ILs: [Bmmim][BF<sub>4</sub>], [Bmim][BF<sub>4</sub>] and [Emim][BF<sub>4</sub>] exist as

**Table 4** Ternary adjustable parameters,  $(C_P)_{123}^{(n)}$  (n = 0-2) parameters along with the standard deviations,  $\sigma(C_P^E)_{123}$ , at T = (293.15-308.15) K

| Parameters                                                            | T/K                              |            |            |            |  |  |  |  |  |  |
|-----------------------------------------------------------------------|----------------------------------|------------|------------|------------|--|--|--|--|--|--|
|                                                                       | 293.15                           | 298.15     | 303.15     | 308.15     |  |  |  |  |  |  |
| $[Bmmim][BF_4](1) + [Bmim][B$                                         | $F_4$ ] (2) + cyclopentanone (3) |            |            |            |  |  |  |  |  |  |
| $C_{\rm p}^{(0)}/{ m J}~{ m K}^{-1}~{ m mol}^{-1}$                    | 51.29                            | 57.94      | 62.06      | 67.69      |  |  |  |  |  |  |
| $C_{\rm p}^{(1)}/{ m J}~{ m K}^{-1}~{ m mol}^{-1}$                    | -4957.51                         | -4201.33   | -3524.14   | -2804.84   |  |  |  |  |  |  |
| $C_{\rm p}^{(2)}/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$                 | -76,033.44                       | -76,466.46 | -76,348.92 | -76,631.42 |  |  |  |  |  |  |
| $\sigma(C_p^E)_{123}/J \text{ K}^{-1} \text{ mol}^{-1}$               | 0.05                             | 0.05       | 0.04       | 0.04       |  |  |  |  |  |  |
| $[Bmmim][BF_4](1) + [Bmim][B$                                         | $F_4$ ] (2) + cyclohexanone (3)  |            |            |            |  |  |  |  |  |  |
| $C_{\rm p}^{(0)}/{ m J}~{ m K}^{-1}~{ m mol}^{-1}$                    | 69.88                            | 99.50      | 144.83     | 186.65     |  |  |  |  |  |  |
| $C_{\rm p}^{(1)}/{ m J}~{ m K}^{-1}~{ m mol}^{-1}$                    | -4093.56                         | -3881.24   | -3621.66   | -3404.42   |  |  |  |  |  |  |
| $C_{\rm p}^{(2)}/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$                 | -73,658.90                       | -71,067.16 | -67,477.10 | -64,550.59 |  |  |  |  |  |  |
| $\sigma(C_p^E)_{123}/J \text{ K}^{-1} \text{ mol}^{-1}$               | 0.04                             | 0.04       | 0.04       | 0.04       |  |  |  |  |  |  |
| $[Bmmim][BF_4](1) + [Emim][B]$                                        | $F_4$ ] (2) + cyclopentanone (3) |            |            |            |  |  |  |  |  |  |
| $C_{\rm p}^{(0)}/{ m J}~{ m K}^{-1}~{ m mol}^{-1}$                    | 1101.64                          | 1090.22    | 1080.66    | 1069.62    |  |  |  |  |  |  |
| $C_{\rm p}^{(1)}/{ m J}~{ m K}^{-1}~{ m mol}^{-1}$                    | 3283.18                          | 3387.79    | 3502.49    | 3880.62    |  |  |  |  |  |  |
| $C_{\rm p}^{(2)}/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$                 | -9193.28                         | -6077.61   | -5629.29   | -3450.75   |  |  |  |  |  |  |
| $\sigma(C_{\rm p}^{\rm E})_{123}/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$ | 0.07                             | 0.07       | 0.07       | 0.08       |  |  |  |  |  |  |
| $[Bmmim][BF_4](1) + [Emim][B]$                                        | $F_4$ ] (2) + cyclohexanone (3)  |            |            |            |  |  |  |  |  |  |
| $C_{\rm p}^{(0)}/{ m J}~{ m K}^{-1}~{ m mol}^{-1}$                    | 1081.34                          | 1099.14    | 1127.77    | 1135.38    |  |  |  |  |  |  |
| $C_{\rm p}^{(1)}/{ m J}~{ m K}^{-1}~{ m mol}^{-1}$                    | 1166.69                          | 1030.55    | 816.01     | 617.81     |  |  |  |  |  |  |
| $C_{\rm p}^{(2)}/{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$                 | -14,572.93                       | -12,089.50 | -10,528.08 | -8337.23   |  |  |  |  |  |  |
| $\sigma(C_p^E)_{123}/J \text{ K}^{-1} \text{ mol}^{-1}$               | 0.04                             | 0.04       | 0.05       | 0.05       |  |  |  |  |  |  |
|                                                                       |                                  |            |            |            |  |  |  |  |  |  |



(x) (x)

**Fig. 1** Surface generated for 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (1) + 1-butyl-3-methylimidazolium tetrafluoroborate (2) + cyclopentanone (3) by excess heat capacities  $(C_P^E)_{123}$  data at 298.15 K

monomer (characterized by cohesion forces; H-bonding occurs between hydrogen atom/s of methyl group/s attached to imidazolium ring with fluorine atoms of  $BF_4$ 

**Fig. 2** Surface generated for 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (1) + 1-butyl-3-methylimidazolium tetrafluoroborate (2) + cyclohexanone (3) by excess heat capacities  $(C_P^E)_{123}$  data at 298.15 K

[11]); cyclopentanone, cyclohexanone are characterized by dipole–dipole interactions as well as Debye and London forces and exist as associated molecular entities.



**Fig. 3** Surface generated for 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (1) + 1-ethyl-3-methylimidazolium tetrafluoroborate (2) + cyclopentanone (3) by excess heat capacities  $(C_P^E)_{123}$  data at 298.15 K



**Fig. 4** Surface generated for 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (1) + 1-ethyl-3-methylimidazolium tetrafluoroborate (2) + cyclohexanone (3) by excess heat capacities  $(C_P^E)_{123}$  data at 298.15 K

The addition of third component like cyclopentanone or cyclohexanone to molecular entities [Bmmim][BF<sub>4</sub>]: [Bmim][BF<sub>4</sub>] and [Bmmim][BF<sub>4</sub>]: [Emim][BF<sub>4</sub>] results in the formation of ternary [Bmmim][BF<sub>4</sub>] (1) + [Bmim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) and [Bmmim][BF<sub>4</sub>] (1) + [Emim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) mixtures. The various processes involved in (1 + 2 + 3) mixtures formation may be assumed to be comprised of the processes: (I) establishment of unlike (a) 1–2, (b) 2–3<sub>n</sub> (n = 2), (c) 1–3<sub>n</sub> contacts; (II) unlike contact formation then leads to rupture of (a) cohesion forces in [Bmmim][BF<sub>4</sub>] or [Bmim][BF<sub>4</sub>] or [Emim][BF<sub>4</sub>]; and (b) dipole–dipole interactions in cyclopentanone or cyclohexanone which in turn yields their respective monomers; and (III) molecules of 1, 2 and 3 then undergo interactions to form (a) 1:2 (b) 2:3 and (c) 1:3 molecular complexes.

If  $\chi_{12}$ ,  $\chi_{23}$ ,  $\chi_{13}$  are molar interaction parameters for (I) unlike 1–2; 2–3<sub>n</sub>; 1–3<sub>n</sub> contacts (leading to enhancement of non-randomness); then change in thermodynamic property,  $\Delta C_{\rm P}$ , due to processes I (a)–(c) was expressed by [51–53].

$$(\Delta C_{\rm P})_{\rm I} = \begin{bmatrix} x_1 x_2 ({}^3\xi_1/{}^3\xi_2)\chi_{12} \\ x_1 + x_2 ({}^3\xi_1/{}^3\xi_2) \end{bmatrix} + \begin{bmatrix} x_2 x_3 ({}^3\xi_2/{}^3\xi_3)\chi_{23} \\ x_2 + x_3 ({}^3\xi_2/{}^3\xi_3) \end{bmatrix} + \begin{bmatrix} x_3 x_1 ({}^3\xi_3/{}^3\xi_1)\chi_{13} \\ x_3 + x_1 ({}^3\xi_3/{}^3\xi_1) \end{bmatrix}$$
(4)

Further, if  $\chi_{11}$ ,  $\chi_{22}$ ,  $\chi_{33}$ ; and  $\chi_{12}'$ ,  $\chi_{12}'' \chi_{12}'''$  are molar interaction parameters for rupture of cohesion forces in ILs and dipole–dipole interactions in cyclopentanone and cyclohexanone (increase in randomness) and specific interactions between 1, 2 and 3 molecules to form 1:2, 2:3, 1:3 molecular complexes (possessing non-random structure), respectively, and then change in  $\Delta C_P$  due to processes II (a)–(b); and III (a)–(c) was given by [54, 55].

$$\begin{aligned} (\Delta C_P)_{\mathrm{II}} &= \left[ \frac{x_1^2 x_2 ({}^3 \xi_1 / {}^3 \xi_2) \chi_{11}}{x_1 + x_2 ({}^3 \xi_1 / {}^3 \xi_2)} \right] + \left[ \frac{x_2^2 x_3 ({}^3 \xi_2 / {}^3 \xi_3) \chi_{22}}{x_2 + x_3 ({}^3 \xi_2 / {}^3 \xi_3)} \right] \\ &+ \left[ \frac{x_3^2 x_1 ({}^3 \xi_3 / {}^3 \xi_1) \chi_{33}}{x_3 + x_1 ({}^3 \xi_3 / {}^3 \xi_1)} \right] \end{aligned} \tag{5}$$

$$(\Delta C_P)_{\mathrm{III}} &= \left[ \frac{x_1 x_2^2 ({}^3 \xi_1 / {}^3 \xi_2) \chi_{12}'}{x_1 + x_2 ({}^3 \xi_1 / {}^3 \xi_2)} \right] + \left[ \frac{x_2 x_3^2 ({}^3 \xi_2 / {}^3 \xi_3) \chi_{12}''}{x_2 + x_3 ({}^3 \xi_2 / {}^3 \xi_3)} \right] \\ &+ \left[ \frac{x_3 x_1^2 ({}^3 \xi_3 / {}^3 \xi_1) \chi_{12}''}{x_3 + x_1 ({}^3 \xi_3 / {}^3 \xi_1)} \right] \end{aligned} \tag{6}$$

The total change in thermodynamic properties due to processes: I (a)–(c); II (a)–(b); and III (a)–(c) was presented by

For the present mixtures, it was assumed that (i) interaction parameters for the establishment of unlike contacts 1-2;  $2-3_n$ ;  $1-3_n$  are nearly equal to the interaction parameters for the formation of 1:2, 2:3, 1:3 molecular complexes; and (ii) interaction parameters for the rupture of cohesion forces in (1) or (2) or (3) components are nearly equal then,  $\chi_{12} \cong \chi_{12}' = \chi_{12}^*$ ;  $\chi_{23} \cong \chi_{12}'' = -\chi_{23}^*;\chi_{13} \cong \chi_{12}'' = \chi_{13}^*;\chi_{11} \cong \chi_{22} \cong \chi_{33} = \chi^*$ , Eq. (7) was then expressed as

$$(C_{\rm P}^{\rm E})_{123} = \left[\frac{x_1 x_2 ({}^{3}\xi_1 / {}^{3}\xi_2)}{x_1 + x_2 ({}^{3}\xi_1 / {}^{3}\xi_2)}\right] \left[(1 + x_2)\chi_{12}^* + x_1\chi^*\right] \\ + \left[\frac{x_2 x_3 ({}^{3}\xi_2 / {}^{3}\xi_3)}{x_2 + x_3 ({}^{3}\xi_2 / {}^{3}\xi_3)}\right] \left[(1 + x_3)\chi_{23}^* + x_2\chi^*\right] \\ + \left[\frac{x_3 x_1 ({}^{3}\xi_3 / {}^{3}\xi_1)}{x_3 + x_1 ({}^{3}\xi_3 / {}^{3}\xi_1)}\right] \left[(1 + x_1)\chi_{13}^* + x_3\chi^*\right]$$
(8)

Equation (8) contains four unknown parameters:  $\chi_{12}^*$ ,  $\chi_{23}^*$ ,  $\chi_{31}^*$  and  $\chi^*$  and these parameters were evaluated by utilizing  $(C_{\rm P}^{\rm E})_{123}$  data of the examined mixtures at four arbitrary compositions. The calculated parameters were then used to predict  $(C_P^E)_{123}$  values at various values of  $x_1$ and  $x_2$ . Such obtained  $(C_P^E)_{123}$  values for the investigated mixtures are presented in Table 3 and also compared with their experimental values. The molar interaction parameters:  $\chi_{12}^*$ ,  $\chi_{23}^*$ ,  $\chi_{31}^*$  and  $\chi^*$  evaluated by utilizing  $(C_{\rm P}^{\rm E})_{123}$  data for the various mixtures are listed in Table 5. The standard deviations between experimental and calculated values (by Graph theory),  $\sigma \left( C_{\rm P}^{\rm E} \right)_{123}$ , are also recorded in Table 5. An examination of Table 3 has revealed that  $(C_{\rm P}^{\rm E})_{123}$  values determined by Graph theory compare well their corresponding experimental values which in turn support the various assumptions made in deriving Eq. (8).

# Flory's theory

Flory's theory was used to correlate the  $(C_P^E)_{123}$  results for the present mixtures which in turn were obtained by differentiating excess molar enthalpies of ternary mixtures with respect to the temperature, *T* [48, 56, 57]. The theory leads to the following expression for  $(C_P^E)_{123}$ 

$$\left(C_{\rm P}^{\rm E}\right)_{123} = -\sum_{1=1}^{3} \frac{x_1 P_1^* \tilde{v}_1^* \alpha_1}{\tilde{v}_1} + \left(\frac{\alpha}{\tilde{v}}\right) \left[\sum_{1=1}^{3} x_1 P_1^* v_1^* - \sum_{1=1}^{3} x_1 v_1^* \theta_2 \chi_{12}^{**}\right]$$
(9)

where  $\tilde{v}_1^*$ ,  $P_1^*$ ,  $\alpha_1$ ,  $\tilde{v}_1$  and  $\theta_2(1 = 1 \text{ or } 2 \text{ or } 3)$  are the characteristic volume, characteristic pressure, thermal coefficient, reduced volume and molecular surface fraction of pure component (1) or (2) or (3) and  $\tilde{v}$ ,  $\alpha$  and  $\chi_{12}^{**}$  are reduced volume, thermal coefficient and interactional energy parameter of mixture and have the same significance as described elsewhere [56]. The values of such parameters for pure liquids are also listed in Table 6. The estimation of  $(C_P^E)_{123}$  data by Flory theory requires a knowledge of Flory parameters for liquids under investigation along with interaction parameters of (1 + 2), (2 + 3), (1 + 3) binaries which in turn were evaluated by utilizing their  $H^E$  values at equimolar composition using equation:

$$H^{\rm E} = \sum x_1 P_1^* (\tilde{U}_1^{-1} - \tilde{U}_{\rm cal}^{-1}) + x_1 v_1^* \theta_2 \chi_{12}^{**} \tilde{U}_{\rm cal}^{-1}$$
(10)

where  $x_1$ ,  $P_1^*$ ,  $v_1^*$ ,  $\theta_2$ ,  $\chi_{12}^{**}$ ,  $\tilde{U}_1$ , and  $\tilde{U}_{cal}$  are mole fraction, characteristic pressure, characteristic volume, molecular surface fraction of pure component (1) or (2) or (3), interactional energy parameter of mixture, reduced configurational energy and calculated reduced configurational energy and have the same significance as described elsewhere [58]. Such calculated Flory parameters are listed in Table 6. Benson and D' Arcy [59] further suggested that interaction parameters,  $\chi_{12}^{**}$ ,  $\chi_{23}^{**}$ ,  $\chi_{13}^{**}$  for (1 + 2), (2 + 3), (1 + 3) binary mixtures must be a function of temperature.

Consequently,  $(C_P^E)_{123}$  values were then expressed by

$$(C_{\rm P}^{\rm E})_{123} = -\sum_{l=1}^{3} \frac{x_{l} P_{1}^{*} \tilde{v}_{1}^{*} \alpha_{l}}{\tilde{v}_{1}} + \begin{pmatrix} \alpha \\ \tilde{v} \end{pmatrix} \left[ \sum_{l=1}^{3} x_{l} P_{1}^{*} v_{1}^{*} - \sum_{l=1}^{3} x_{l} v_{1}^{*} \theta_{2} \chi_{12}^{**} \right]$$
$$+ \sum_{l=1}^{3} \frac{x_{l} v_{1}^{*} \theta_{2}}{\tilde{v}} \left( \frac{\partial \chi_{12}^{**}}{\partial T} \right)$$
(11)

The reduced volumes,  $\tilde{v}$ , and thermal coefficient,  $\alpha$ , of ternary mixtures were calculated using

$$\tilde{\nu} = \left( V_{123}^{\rm E} + \sum_{l=1}^{3} x_l \nu_l \right) / \sum_{l=1}^{3} x_l \nu_l^* \tag{12}$$

$$\alpha = \sum_{1=1}^{3} x_1 \alpha_1 \tag{13}$$

where  $V_{123}^{\rm E}$  represent excess molar volumes of ternary (1 + 2 + 3) mixtures. The calculated  $(C_{\rm P}^{\rm E})_{123}$  values are presented and compared with experimental values in Table 3. Examination of data in Table 3 has revealed that Flory's theory correctly predicts the sign of  $(C_{\rm P}^{\rm E})_{123}$  values of [Bmmim][BF<sub>4</sub>] (1) + [Emim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) mixtures. However, quantitative agreement is poor. The failure of theory to correctly predict the sign of  $(C_{\rm P}^{\rm E})_{123}$  data of [Bmmim][BF<sub>4</sub>] (1) + [Bmim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) mixtures anone or cyclohexanone (3) mixtures may be due to strong interactions operating among the various components.

**Table 5** Interaction energies:  $\chi_{12}^*, \chi_{23}^*, \chi_{31}^*$  and  $\chi^*$  parameters of Eq. (8) and  $\chi_{12}^{**}, \chi_{23}^{**}, \chi_{13}^{**}$  parameters of Flory theory along with connectivity parameters of third degree of a molecule,  $({}^3\xi_1)$  or  $({}^3\xi_1)_{\rm m}$  (1 = 1 or 2 or 3) utilized in Graph theory for the determination of  $(C_{\rm P}^{\rm E})_{123}$  at T = (293.15-308.15) K

| $\hline \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.403 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.396 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.287 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.89  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.51  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.55  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.32  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.35  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.55  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.18  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.73  |
| $[Brmin][BF_4] (1) + [Bmin][BF_4] (2) + cyclohexanone (3)$ $({}^{3}\xi_{1}) = ({}^{3}\xi_{1})_{m} & 3.403 & 3.403 & 3.403 & 3 \\ ({}^{3}\xi_{2}) = ({}^{3}\xi_{2})_{m} & 2.396 & 2.396 & 2.396 & 2 \\ ({}^{3}\xi_{3}) = ({}^{3}\xi_{3})_{m} & 2.105 & 2.105 & 2.105 & 2 \\ ({}^{3}\xi_{3}) = ({}^{3}\xi_{3})_{m} & 2.105 & 2.105 & 2.105 & 2 \\ ({}^{3}\xi_{3}) = ({}^{3}\xi_{3})_{m} & 2.105 & 2.105 & 2.105 & 2 \\ ({}^{2}\xi_{3})I K^{-1} mol^{-1} & -325.42 & -313.10 & -298.74 & -286 \\ ({}^{2}\chi_{3})I K^{-1} mol^{-1} & 248.97 & 243.83 & 234.33 & 229 \\ ({}^{3}\chi_{13}I K^{-1} mol^{-1} & -14.35 & -19.90 & -27.02 & -28 \\ ({}^{2}\chi_{13}I K^{-1} mol^{-1} & 396.59 & 385.68 & 378.74 & 366 \\ (C_{p}^{E})_{123}I K^{-1} mol^{-1} (Graph) & 1.22 & 1.08 & 1.18 & 1 \\ ({}^{2}\chi_{12}^{*}I cm^{-3} & 0.90 & 0.72 & 0.58 & 0 \\ ({}^{2}\chi_{23}^{*}I cm^{-3} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{2}\chi_{13}^{*}I cm^{-3} & 1.75 & 1.81 & 1.99 & 2 \\ ({}^{2}\chi_{13}I cm^{-3} & 0.91 & 0.91 \\ ({}^{2}\chi_{13}I cm^{-3} & 0.91 & 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.73  |
| $ \begin{pmatrix} {}^3\xi_1 \end{pmatrix} = \begin{pmatrix} {}^3\xi_1 \end{pmatrix}_{\rm m} & 3.403 & 3.403 & 3.403 & 3.403 & 3 \\ ({}^3\xi_2 ) = \begin{pmatrix} {}^3\xi_2 \end{pmatrix}_{\rm m} & 2.396 & 2.396 & 2.396 & 2 \\ ({}^3\xi_3 ) = \begin{pmatrix} {}^3\xi_3 \end{pmatrix}_{\rm m} & 2.105 & 2.105 & 2.105 & 2 \\ ({}^3\xi_3 ) = \begin{pmatrix} {}^3\xi_3 \end{pmatrix}_{\rm m} & 2.105 & 2.105 & 2.105 & 2 \\ ({}^3\xi_3 ) = \begin{pmatrix} {}^3\xi_3 \end{pmatrix}_{\rm m} & -325.42 & -313.10 & -298.74 & -286 \\ ({}^2s_3 ) J K^{-1} \mol^{-1} & 248.97 & 243.83 & 234.33 & 229 \\ ({}^x_{13} / J K^{-1} \mol^{-1} & -14.35 & -19.90 & -27.02 & -28 \\ ({}^x/ J K^{-1} \mol^{-1} & 396.59 & 385.68 & 378.74 & 366 \\ ({}^c_p)_{123} / J K^{-1} \mol^{-1} (Graph) & 1.22 & 1.08 & 1.18 & 1 \\ ({}^{x_{12} / J \ cm^{-3}} & 0.90 & 0.72 & 0.58 & 0 \\ ({}^{x_{23} / J \ cm^{-3}} & 1.75 & 1.81 & 1.99 & 2 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.45 & 0.58 & 0.79 & 0 \\ ({}^{x_{13} / J \ cm^{-3}} & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.76 & 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.403 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.396 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.105 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.11  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.39  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.08  |
| $\sigma(C_p^E)_{123}/J \ K^{-1} \ mol^{-1}(Graph)$ 1.221.081.181 $\chi_{12}^{**}/J \ cm^{-3}$ 0.900.720.580 $\chi_{23}^{**}/J \ cm^{-3}$ 0.450.580.790 $\chi_{13}^{**}/J \ cm^{-3}$ 1.751.811.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.30  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.35  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.55  |
| $\chi_{13}^{**}$ /J cm <sup>-3</sup> 1.75 1.81 1.99 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.87  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.06  |
| $\sigma(C_{E}^{E})_{123}/J \text{ K}^{-1} \text{ mol}^{-1}(\text{Flory})$ 18.72 18.23 17.43 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.42  |
| $[Bmmim][BF_4] (1) + [Emim][BF_4] (2) + cyclopentanone (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| $\binom{3}{\xi_1} = \binom{3}{\xi_1}_m$ 3.403 3.403 3.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.403 |
| $({}^{3}\xi_{2}) = ({}^{3}\xi_{2})_{m}$ 1.639 1.639 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.639 |
| $({}^{3}\xi_{3}) = ({}^{3}\xi_{3})_{m}$ 1.287 1.287 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.287 |
| $\chi_{12}^*/J$ K <sup>-1</sup> mol <sup>-1</sup> 128.97 143.02 139.75 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.22  |
| $\chi^{*}_{23}$ /J K <sup>-1</sup> mol <sup>-1</sup> 50.44 53.84 58.25 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.60  |
| $\chi_{13}^{*}$ /J K <sup>-1</sup> mol <sup>-1</sup> -22.95 3.72 7.81 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.18  |
| $\chi^*/J K^{-1} mol^{-1}$ -142.38 -178.23 -169.62 -219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.02  |
| $\sigma(C_{\rm p}^{\rm E})_{123}$ /J K <sup>-1</sup> mol <sup>-1</sup> (Graph) 1.64 1.58 1.54 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.52  |
| $\chi_{10}^{**}/[1 \text{ cm}^{-3}]$ 0.99 0.90 0.93 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.93  |
| $\chi_{22}^{+2}/\mathrm{Icm}^{-3}$ 10.23 10.71 10.51 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.33  |
| $\chi_{12}^{**}$ /I cm <sup>-3</sup> 178 1.72 1.73 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.73  |
| $\sigma(C^{\rm E})_{\rm var}/{\rm I}~{\rm K}^{-1}~{\rm mol}^{-1}({\rm Florv})$ 25.65 26.94 28.22 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.01  |
| $[\text{Rmmin}][\text{RE}_1(1) \perp [\text{Rmmin}][\text{RE}_1(2) \perp \text{cyclobevanone (3)}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| $\binom{3}{2} = \binom{3}{2} = \binom{3}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 402 |
| $(\zeta_1) = (\zeta_1)m$ $(\zeta_2) = (\zeta_2)m$ $(\zeta_3)m$ $(\zeta_$ | 1 630 |
| $(3\xi_2) = (3\xi_3)_{\rm m}$ (35) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05) 1.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.105 |

#### Table 5 continued

| Parameters                                                                  | T/K    |        |        |        |  |  |  |
|-----------------------------------------------------------------------------|--------|--------|--------|--------|--|--|--|
|                                                                             | 293.15 | 298.15 | 303.15 | 308.15 |  |  |  |
| $\chi_{12}^*/J \text{ K}^{-1} \text{ mol}^{-1}$                             | 28.91  | 34.94  | 38.94  | 46.21  |  |  |  |
| $\chi_{23}^*$ /J K <sup>-1</sup> mol <sup>-1</sup>                          | 114.06 | 118.12 | 121.23 | 115.53 |  |  |  |
| $\chi_{13}^*$ /J K <sup>-1</sup> mol <sup>-1</sup>                          | -43.18 | -43.22 | -40.37 | -27.11 |  |  |  |
| $\chi^*/J \text{ K}^{-1} \text{ mol}^{-1}$                                  | 10.22  | 4.18   | -0.64  | -17.64 |  |  |  |
| $\sigma(C_p^E)_{123}/J \text{ K}^{-1} \text{ mol}^{-1}(\text{Graph})$       | 1.23   | 1.20   | 1.13   | 0.94   |  |  |  |
| $\chi_{12}^{**}/J \text{ cm}^{-3}$                                          | 0.99   | 0.90   | 0.93   | 0.93   |  |  |  |
| $\chi_{23}^{**}$ /J cm <sup>-3</sup>                                        | 4.53   | 4.98   | 5.44   | 5.20   |  |  |  |
| $\chi_{13}^{**}$ /J cm <sup>-3</sup>                                        | 1.75   | 1.81   | 1.99   | 2.06   |  |  |  |
| $\sigma(C_p^{\rm E})_{123}/J \text{ K}^{-1} \text{ mol}^{-1}(\text{Flory})$ | 15.56  | 16.65  | 18.12  | 18.74  |  |  |  |

Also included are the deviations,  $\sigma \left(C_{\rm P}^{\rm E}\right)_{123}$ , between experimental and calculated  $\left(C_{\rm P}^{\rm E}\right)_{123}$  values by investigated theories

**Table 6** Parameters of pure components, Characteristic volume,  $V^*$ , characteristic pressure,  $P^*$ , molar volume, V, reduced volume,  $\tilde{v}$  and thermal expansion coefficient,  $\alpha$ , used in Flory theory calculations at T = (293.15-308.15) K

| Components                                         | T/K    | $V^*/\mathrm{cm}^3 \mathrm{mol}^{-1}$ | $P^*/J \text{ cm}^{-3}$ | $V/cm^3 mol^{-1}$ | $\tilde{v}$ /cm <sup>3</sup> mol <sup>-1</sup> | $\alpha (\times 10^{-3})/K^{-1}$ |
|----------------------------------------------------|--------|---------------------------------------|-------------------------|-------------------|------------------------------------------------|----------------------------------|
| 1-butyl-2,3-dimethyl imidazolium tetrafluoroborate | 293.15 | 185.73                                | 324.67                  | 201.13            | 1.08                                           | 0.299                            |
|                                                    | 298.15 | 184.76                                | 351.26                  | 201.42            | 1.09                                           | 0.322                            |
|                                                    | 303.15 | 184.51                                | 360.43                  | 201.78            | 1.09                                           | 0.329                            |
|                                                    | 308.15 | 184.23                                | 369.48                  | 202.08            | 1.10                                           | 0.336                            |
| 1-butyl-3-methyl imidazolium tetrafluoroborate     | 293.15 | 159.60                                | 687.93                  | 187.86            | 1.18                                           | 0.687                            |
|                                                    | 298.15 | 160.95                                | 656.03                  | 188.52            | 1.17                                           | 0.650                            |
|                                                    | 303.15 | 162.68                                | 611.45                  | 189.08            | 1.16                                           | 0.601                            |
|                                                    | 308.15 | 163.11                                | 605.63                  | 189.66            | 1.16                                           | 0.594                            |
| 1-ethyl-3-methyl imidazolium tetrafluoroborate     | 293.15 | 132.84                                | 689.00                  | 153.98            | 1.16                                           | 0.609                            |
|                                                    | 298.15 | 133.31                                | 678.42                  | 154.46            | 1.16                                           | 0.596                            |
|                                                    | 303.15 | 132.93                                | 700.33                  | 154.91            | 1.17                                           | 0.614                            |
|                                                    | 308.15 | 132.87                                | 711.48                  | 155.42            | 1.17                                           | 0.622                            |
| Cyclopentanone                                     | 293.15 | 71.03                                 | 660.42                  | 88.61             | 1.25                                           | 1.016                            |
|                                                    | 298.15 | 71.12                                 | 659.21                  | 89.06             | 1.25                                           | 1.022                            |
|                                                    | 303.15 | 71.20                                 | 658.06                  | 89.52             | 1.26                                           | 1.030                            |
|                                                    | 308.15 | 71.32                                 | 655.39                  | 89.98             | 1.26                                           | 1.034                            |
| Cyclohexanone                                      | 293.15 | 83.90                                 | 633.81                  | 103.59            | 1.23                                           | 0.953                            |
|                                                    | 298.15 | 83.59                                 | 652.20                  | 104.08            | 1.25                                           | 0.987                            |
|                                                    | 303.15 | 83.13                                 | 675.54                  | 104.62            | 1.26                                           | 1.036                            |
|                                                    | 308.15 | 83.05                                 | 682.33                  | 105.17            | 1.27                                           | 1.056                            |

#### Conclusions

Excess heat capacities,  $(C_P^E)_{123}$ , of ternary ionic liquid mixtures of [Bmmim][BF<sub>4</sub>] (1) + [Bmim][BF<sub>4</sub>] or [Emim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) have been determined by utilizing the measured molar heat capacities  $(C_P)_{123}$  data of the said mixtures at the studied temperatures. While  $(C_P^E)_{123}$  values of [Bmmim][BF<sub>4</sub>] (1) + [Emim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) mixtures are positive over the entire mole fraction of components (1) and (2), those for [Bmmim][BF<sub>4</sub>] (1) + [Bmim][BF<sub>4</sub>] (2) + cyclopentanone or cyclohexanone (3) mixtures change sign with change in relative proportion of constituent molecules. The analysis of  $(C_P^E)_{123}$  data suggests that cyclohexanone gives relatively more compact structure in [Bmmim][BF<sub>4</sub>]: [Bmim][BF<sub>4</sub>] and [Bmmim][BF<sub>4</sub>]: [Emim][BF<sub>4</sub>] molecular entities as compared to cyclopentanone. The  $(C_P^E)_{123}$  data have also been analyzed in terms of (i) Graph; and (ii) Flory theories. It has been observed that values predicted by Graph theory compare well with their experimental values. However, Flory theory shows only qualitative agreement with measured values.

Acknowledgements The authors are thankful to Mr. K. Chandrasekhar Reddy, SSBN College, Anantapur, for providing Gaussian-09 facility and C-DAC, PUNE, India, for providing the computational work. V. K. Sharma is grateful to University Grant Commission (UGC), New Delhi, for the award of SAP.

#### References

- 1. Zabransky M, Ruzicka V. Heat capacity of liquids. Critical Review, 9th PPEPPD Kurashiki, Japan. 4. Pineiro, A. 2001.
- Marsh KN, Deev A, Wu ACT, Tran E, Klamt A. Room temperature Ionic liquids as replacements for conventional solvents: a review. Korean J Chem Eng. 2002;19:357–62.
- Shih TW, Soriano AN, Li MH. Heat capacities of aqueous solutions containing diethanolamine and *N*-methyldiethanolamine. J Chem Thermodyn. 2009;41:1259–63.
- Mundhwa M, Elmahmudi S, Maham Y, Henni A. Molar heat capacity of aqueous sulfolane, 4-formylmorpholine, 1-methyl-2pyrrolidinone, and triethylene glycol dimethyl ether solutions from (303.15–353.15) K. J Chem Eng Data. 2009;54:2895–901.
- Navarro AM, García B, Hoyuelos FJ, Peñacoba IA, Ibeas S, Leal JM. Heat capacity behavior and structure of Alkan-1-ol/Alkylbenzoate binary solvents. J Phys Chem B. 2012;116:9768–75.
- Hu J, Sari O, Eicher S, Rakotozanakajy AR. Determination of specific heat of milk at different fat content between 1 and 59°C using micro DSC. J Food Eng. 2009;90:395–9.
- Checoni RF, Volpe PLO. Measurements of the molar heat capacities and excess, molar heat capacities for water + organic solvents mixtures at 288.15–303.15 K and atmospheric pressure. J Solution Chem. 2010;39:259–76.
- Hanks RW, Christensen JJ. The prediction of multi component vapor-liquid equilibria from binary heats of mixing. I. Chem Symp Ser. 1980;56:31–48.
- Murty AKS, Zudkevitch D. Effect of heat of mixing and vaporliquid equilibrium on design, performance and economics of distillation. I. Chem Symp Ser. 1980;56:51–77.
- Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF. Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data. 2004;49:954–64.
- 11. Gupta H, Kataria J, Sharma D, Sharma VK. Topological investigations of molecular interactions in binary Ionic liquid mixtures with a common ion: excess molar volumes, excess isentropic compressibilities, excess molar enthalpies and excess molar heat capacities. J Chem Thermodyn. 2016;103:189–205.
- Gupta H, Solanki S, Sharma VK. Topological analysis of thermodynamic properties of binary mixtures containing 1-butyl-3methylimidazolium tetrafluoroborate and cycloalkanones. J Therm Anal Calorim. 2017;127:2459–72.
- Gupta H, Sekhar MC, Krishna TS, Sharma VK. Thermodynamic properties of mixtures containing 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and cyclopentanone or cyclohexanone. J Mol Liqs. 2017;231:225–37.
- 14. Sharma VK, Kataria J, Bhagour S. Thermodynamic investigations of 1-ethyl-3-methylimidazoluim tetrafluoroborate and cycloalkanone mixtures: excess molar volumes, excess isentropic compressibilities, excess molar enthalpies and excess heat capacities. J Therm Anal Calorim. 2014;118:431–47.
- 15. Scholz E. Karl Fischer Titration. Berlin: Springer-Verlag; 1984.

- Riddick JA, Bunger WB, Sakano TK. Organic solvents physical properties and methods of purification. 4th ed. New York: Wiley Interscience; 1986.
- Dubey GP, Sharma M. Temperature and composition dependence of the densities, viscosities, and speeds of sound of binary liquid mixtures of 1-butanol with hexadecane and squalane. J Chem Eng Data. 2008;53:1032–8.
- Saini N, Yadav JS, Jangra SK, Sharma D, Sharma VK. Thermodynamic studies of molecular interactions in mixtures of o-toluidine with pyridine and picolines: excess molar volumes, excess molar enthalpies and excess isentropic compressibilities. J Chem Thermodyn. 2011;43:782–95.
- Pal A, Kumar B, Kang TS. Effect of structural alteration of ionic liquid on their bulk and molecular level interactions with ethylene glycol. Fluid Phase Equilib. 2013;358:241–9.
- Malham IB, Turmine M. Viscosities and refractive indices of binary mixtures of 1-butyl-3-methylimidazolium terafluoroborate and 1-butyl-2,3-dimethylimidazolium terafluoborate with water at 298 K. J Chem Thermodyn. 2008;40:718–23.
- Ciocirlan O, Iulian O. Properties of pure 1-Butyl-2,3dimethylimidazolium tetrafluoroborate ionic liquid and its binary mixtures with dimethyl sulfoxide and acetonitrile. J Chem Eng Data. 2012;57:3142–8.
- 22. Huo Y, Xia S, Ma P. Densities of ionic liquids, 1-butyl-3methylimidazolium hexafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate, with Benzene, Acetonitrile, and 1-propanol. J Chem Eng Data. 2007;52:2077–82.
- Taib MM, Murugesan T. Density, refractive index, and excess properties of 1-butyl-3-methylimidazolium tetrafluoroborate with water and monoethanolamine. J Chem Eng Data. 2012; 57:120–6.
- 24. Pal A, Kumar B. Volumetric and acoustic properties of binary mixtures of the ionic liquid 1-butyl-3- methylimidazolium tetrafluoroborate [bmim][BF<sub>4</sub>] with alkoxyalkanols at different temperatures. J Chem Eng Data. 2012;57:688–95.
- 25. Sunkara GR, Tadavarthi MM, Tadekoru VK, Tadikonda SK, Bezawada SR. Density, refractive index, and speed of sound of the binary mixture of 1-butyl-3-methylimidazolium tetrafluoroborate + N-Vinyl-2-pyrrolidinone from T = (298.15–323.15) K at atmospheric pressure. J Chem Eng Data. 2015;60:886–94.
- 26. Govinda V, Attri P, Venkatesu P, Venkateswarlu P. Evaluation of thermophysical properties of ionic liquids with polar solvent: a comparable study of two families of ionic liquids with various ions. J Phys Chem B. 2013;117:12535–48.
- Seki S, Tsuzuki S, Hayamizu K, Umebayashi Y, Serizawa N, Takei K, Miyashiro H. Comprehensive refractive index property for room-temperature ionic liquids. J Chem Eng Data. 2012;57: 2211–6.
- Stoppa A, Zech O, Kunz W, Buchner R. The conductivity of imidazolium-based ionic liquids from (-35 to 195) CA Variation of Cation's Alkyl Chain. J Chem Eng Data. 2010; 55:1768-73.
- Reddy MS, Nayeem SM, Raju KTSS, Babu BH. The study of solute–solvent interactions in 1-ethyl-3- methylimidazolium tetrafluoroborate + 2-ethoxyethanol from density, speed of sound, and refractive index measurements. J Therm Anal Calorim. 2016;124:959–71.
- Vercher E, Llopis FJ, Gonzalez-Alfaro V, Miguel PJ, Orchilles V, Martinez- Andreu A. Volumetric properties, viscosities and refractive indices of binary liquid mixtures of tetrafluoroboratebased ionic liquids with methanol at several temperatures. J Chem Thermodyn. 2015;90:174–84.
- 31. Ciocirlan O, Teodorescu M, Dragoesce D, Iulian O, Barhala A. Densities and excess volumes for binary mixtures of cyclopentanone with chloroalkanes at T = (288.15, 298.15, 308.15 and 318.15) K. J Chem Eng Data. 2010;55:3891–5.

- 32. Dragoescu D, Teodorescu M, Barhala A. Isothermal (vapour plus liquid) equilibria and excess Gibbs free energies in some binary (cyclopentanone plus chloroalkane) mixtures at temperatures from 298.15 to 318.15 K. J Chem Thermodyn. 2007;39:1452–7.
- 33. Bermudez-Salguero C, Gracia-Fadrique J, Calvo E, Amigo A. Densities, refractive indices, speeds of sound, and surface tensions for dilute aqueous solutions of 2-methyl-1-propanol, cyclopentanone, cyclohexanone, cyclohexanol, and ethyl ace-toacetate at 298.15 K. J Chem Eng Data. 2011;56:3823–9.
- Tsierkezos NG, Molinou IE, Filippou AC. Thermodynamic properties of binary mixtures of cyclohexanone with n-alkanols (C<sub>1</sub>-C<sub>5</sub>) at 293.15 K. J Solution Chem. 2005;34:1371–86.
- Lange NA. Handbook of chemistry. 11th ed. New York: Mc Graw-Hill; 1973.
- 36. Ciocirlan O, Teodorescu M, Dragoescu D, Iulian O, Barhala A. Densities and excess molar volumes for binary mixtures of cyclohexanone with chloroalkanes at temperatures between (288.15 and 318.15) K. J Chem Eng Data. 2010;55:968–73.
- Rafiee HR, Ranjbar S, Poursalman F. Densities and viscosities of binary and ternary mixtures of cyclohexanone, 1,4-dioxane and isooctane from T = (288.15–313.15) K. J Chem Thermodyn. 2012;54:266–71.
- Sharma VK, Rohilla A. Excess heat capacities of 1-methyl pyrrolidin-2-one and pyridine or picolines mixtures. Thermochim Acta. 2013;568:140–7.
- Sabbah R, Xu-Wu A, Chickos JS, Leitao MLP, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.
- 40. Rebelo LPN, Najdanovic-Visak V, Visak ZP, Nunes da Ponte M, Szydlowski J, Cerdeirina CA, Troncoso J, Romani L, Esperança JMSS, Guedesc HJR, De Sousa HC. A detailed thermodynamic analysis of [C<sub>4</sub>mim] [BF<sub>4</sub>] + water as a case study to model ionic liquid aqueous solutions. Green Chem. 2004;6:369–81.
- 41. Sanmamed YA, Navia P, Gonzalez-Salgado D, Troncoso J, Romani L. Pressure and temperature dependence of isobaric heat capacity for [Emim][BF4], [Bmim][BF4], [Hmim][BF4], and [Omim][BF4]. J Chem Eng Data. 2010;55:600–4.
- Fuchs R. Heat capacities of liquid ketones and aldehydes at 298 K. Can J Chem. 1980;58:2305–6.
- 43. Nishikawa K, Ohomura K, Tamura K, Murakami S. Excess thermodynamic properties of mixtures of cyclohexanone and benzene at 298.15 and 308.15 K and the effect of excess expansion factor. Thermochim Acta. 1995;267:323–32.
- 44. Lide DR, Kehiaian HV. CRC handbook of Thermophysical and thermochemical data. Boca Raton, FL: CRC Press; 1994.
- Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–8.

- 46. García-Miaja G, Troncoso J, Romaní L. Excess molar properties for binary systems of alkylimidazolium-based ionic liquids + nitromethane. Experimental results and ERAS-model calculations. J. Chem. Thermodyn. 2009;41:334–41.
- Allinger NL, Allisger J, Darooge M. Conformational analysis. XXXVIII. The conformations of cyclohexanone rings. J Am Chem Soc. 1964;86:4061–7.
- 48. Sharma VK, Dua R, Jangra SK. Heat capacities of binary and ternary mixtures containingo-chlorotoluene, cyclic ether and aromatic hydrocarbons. Fluid Phase Equilib. 2014;378:83–92.
- 49. Huggins ML. The thermodynamic properties of liquids, including solutions I. Intermolecular energies in monoatomic liquids and their mixtures. J Phys Chem. 1970;74:371–8.
- Huggins ML. The thermodynamic properties of liquids, including solutions. Part 2. Polymer solutions considered as diatomic systems. Polymer. 1971;12:389–99.
- Sharma D, Yadav JS, Singh KC, Sharma VK. Molar excess volumes and excess isentropic compressibilities of ternary mixtures containing *o*-toluidine. J Solution Chem. 2008;37:1099–112.
- 52. Kumar S, Sharma VK, Yadav JS, Moon II. Thermodynamic investigation of molecular interactions in 1,3-dioxolane or 1,4dioxane + benzene or toluene + formamide or +*N*,*N*-dimethylformamide ternary mixtures at 308.15 K and Atmospheric Pressure. J Solution Chem. 2010;39:680–91.
- Neeti, Jangra SK, Yadav JS, Dimple, Sharma VK. Thermodynamic investigations of ternary o-toluidine + tetrahydropyran + N,N-dimethylformamide mixture and its binaries at 298.15, 303.15 and 308.15 K. J Mol Liqs. 2011;163:36–45.
- 54. Sharma VK, Bhagour S, Sharma D, Solanki S. Thermodynamic properties of ternary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate with 1-methyl pyrrolidin-2-one or pyrrolidin-2one + water. Thermochim Acta. 2013;563:72–81.
- 55. Flory PJ. The statistical thermodynamic of liquid mixtures. J Am Chem Soc. 1965;87:1833–8.
- 56. Flory PJ. The thermodynamic properties of mixture of small nonpolar molecules. J Am Chem Soc. 1965;87:1838–46.
- Holzhauer JK, Zieglery WT. Temperature dependence of excess thermodynamic properties of n-heptane-toluene, methylcyclohexane-toluene, and n-heptane-ethylcyclohexane systems. J Phy Chem. 1975;79:590–604.
- Sharma D, Yadav JS, Kumar S, Singh KC, Sharma VK. Topological and thermodynamic investigations of molecular interactions of aniline and *o*-toluidine with chloroform. Thermochim Acta. 2008;471:74–9.
- Benson GC, Arcy PJD, Kumaran MK. Heat capacities of binary mixtures of n-heptane with hexane isomers. Thermochim Acta. 1984;75:353–60.