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Abstract: In this paper, a prey-predator eco-epidemiological model with susceptible and 

diseased prey is constructed and investigated. The existence, uniqueness and boundedness of 

the solution of the system are studied. The conditions for the local and global stability of 

coexistence steady state are examined. At last, the mathematical results are interpreted with 

the help of numerical simulations. 

Key words: - Infected, Susceptible, Boundedness, Local stability, Global stability, Routh-

Hurwitze criteria. 

 

1. Introduction: 

Ecological systems like Prey- Predator, natural system, etc are dynamic, complex and non-linear in 

nature. The study of the dynamics of this relationship is one of the dominant subjects in mathematical 

Ecology, which can be obtained through the formulation and analysis of Mathematical models. Many 

researchers like Hastigs and Powell [2,9,14,16,17,21] examined the complex non-linear behavior of 3 

species ecological models. 

Mathematical epidemiology has become an interesting topic of research since the model of 

Kermack-McKendrick on SIRS (susceptible-infected-recovered-susceptible) systems. The effect of 

disease in ecological system is an important issue from mathematical and ecological point of view. 

Mathematical ecology and mathematical epidemiology are two different fields in the study of biology 

and applied mathematics. The combination of these two is studied which is termed as eco-

epidemiology.  

In this paper, we study the complex dynamics of a three-dimensional ecological model consisting of 

the species namely susceptible prey, infected prey and predator with functional responses. The 

functional response refers to the way a predator responds to the change in the density of prey attacked 

per unit time by the predator. In this model Type-II & Type-IV functional responses are considered to 

study the behavior of the systems.  
 Here the converted infected prey to susceptible will not be infected again which is the assumption 

we consider in this model. The predator will have interaction either with infected prey or susceptible prey, not 

both at a time. 

 

The proposed model is  
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Where ( ), ( ), ( )S I Pt t tx x x  are denote the density of susceptible prey, infected prey and Predator 

respectively at any instant of time t. 1 2 0 2 1 3 0, , , , , , , , , ,oa a m m m m      are positive constants. The 

parameter ' 1a ' is growth rate of susceptible prey, The parameter ' 2a ' is intra specific competition 

among individuals of prey Sx ,  The parameters , ,    are half saturation constants ,  0 2,m m are  

transmission rate from infected prey to susceptible prey, 1 3,m m are the maximal growth rate of the 

species , 0 is probability coefficient of converting infected prey into   susceptible prey,
 0 is mortality 

rate of the predator .  

  The biological meaning of  system (1.1) is describes as follows 

• In this food chain model, the population Susceptible ( Sx ) grows logistically in the absence of 

it's natural Predator ( Px ) while it could be decreases due to hunting by the Predator ( Px ) with 

the type-IV functional response. The susceptible Prey ( Sx  ) is decreases due to interaction 

with Infected Prey ( Ix ). 

• The infected prey ( Ix ) population  grows  when it interaction with  either  The susceptible 

Prey ( Sx ) or Predator ( Px ) and it  is having  recovering rate ( 0 ). 

• The Predator population ( Px ) is decline in the absence of  it's sole food source ( Sx  or  Ix  or 

both) and grows by hunting and eating  susceptible Prey ( Sx  ), The Predator population ( Px  ) 

is  decreases due  to interaction with Infected Prey ( Ix ).     

The system (1.1 ) has eleven parameters.  It is evident that dealing a system having more number of 

parameters is challenging and required more complicated analysis. Reformulating a model in 

dimensionless type is helpful from many aspects. This procedure will facilitate to see the consistency 

of the model equations and ensure that each one terms have an equivalent set of units in equation. 

Additionally, non-dimensionalizing a model reduces the amount of free parameters and divulges a 

smaller set of quantities that govern the dynamics. 

        After non-dimensionalization, The proposed model (1.1 )  becomes 
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2. Boundedness of the system: In this section, we will attain some adequate conditions  for the    

boundedness of the system. 

 

Theorem(2.1): The system (1.2 ) is uniformly bounded. 

 

Proof:  define a function ,  ( ) S I Pt x x x = + + then  
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3. Steady states 

     The system has the following five steady state solutions resulting from 0, 0, 0S I P
dx dx dx

dt dt dt
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5)  The coexistent steady  state is obtained by from the equations: 
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Solving equations (3.2) & (3.3),we get    
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By using Ix


 and Px


 ,  the equation (3.1) becomes 
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By choosing the parameter values in either of the following two cases by Descartes' rule of sign, the 

equation (3.4) get a positive solution Sx


. The two cases are  
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4. Stability analysis of coexistent steady state 

Theorem(4.1): The interior steady state , ,S I PE x x x
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The characteristic equation of ( )J E is 
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 

. 

By Routh-Hurwitze criteria, the steady state  point , ,S I PE x x x
   

 
 

 is locally asymptotically stable, if 

( )1 3 1 2 30, 0    0C C and C C C  −  holds. 

 

Theorem(4.2): Along with the conditions stated in the  above theorems(4.1) and  

if

( )

2
2
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( )( )
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S S I I

S S S SP S S

l x l x x x
k

x x x xx x x
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  

  

 
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 

 then , the steady state , ,S I PE x x x
   

 
 

 is 

globally asymptotically stable. 

 

Proof: Consider a Lyapunov function ( )t  such that 

( ) 1 2 3ln ln lnS I P
S S S I I I P P P

S I P

x x x
t n x x x n x x x n x x x

x x x


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          

         

, where 1 2,n n  and 3n  

are positive constants. 
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  and 

( )

2
2

0 0 4
3 1 1
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l x l x x x
k

x x x xx x x


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   + ++   
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,then 0.
d

dt


 Hence, The  point  

, ,S I PE x x x
   

 
 

 is globally asymptotically stable, if the above conditions are satisfied. 

 

 

5. Numerical Simulations:  

If choose the parameter values 0l = 0.009 ; 1 = 1.09 ; 3 = 0.09 ; 4 = 0.09 ;  5 = 0.19 ; 7 = 0.009 ; 

8 = 0.09 ; 1 = 1.9 ; 2 = 1.00009 ; 3 = 1.4 ;Then we obtain  the positive Steady state point  is 

 (0.5, 0.02, 0.0016) and 1C = 0.1630 >0 ; 2C = 0.0049 ; 3C = 0.00000082966>0 ; 

1 2 3C C C− = 0.00079662 >0 .Therefore the system (1.2) is stable at the point (0.5, 0.02, 0.0016). The 

corresponding stability graphs as follows 

 

 

 

 

 

 

 

 

   

 

 

 

                       Figure.1                                                                                  Figure. 2   

     

Figure.1 represents the time Vs populations , ,S I Px x x  and Figure.2 represents the phase portraits of   

                 , , .S I Px x x  

 

 If choose the parameter values 0l = 0.0998 ; 1 = 1.07 ; 3 = 0.009 ; 4 = 0.08 ;  5 = 0.2 ; 

7 = 0.01 ; 8 = 0.099 ; 1 = 1.42 ; 2 = 1.01 ; 3 = 1.2 ;Then we obtain  the positive Steady state 

point  is 
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 (0.7, 0.0184, 0.0003) and 1C = 0.1630 >0 ; 2C = 0.0049 ; 3C = 0.00000082966>0 ; 1 2 3C C C− =

0.00079662 >0 .Therefore the system (1.2) is stable at the point (0.7, 0.0184, 0.0003). The 

corresponding stability graphs as follows 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure. 3                                                                                     Figure. 4  

 

Figure.3 represents the time Vs populations , ,S I Px x x  and Figure.4 represents the phase portraits of   

                 , , .S I Px x x  

 

6. Conclusions: 

In this paper, a predator and two preys out of which one is susceptible and another one is considered as 

infected. The boundedness of the solutions and existence of steady states is established in the sections 

2 & 3. The local and global stability of the proposed model around its steady states has been analyzed. 

The numerical simulations are carried by using MATLAB. 
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