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CHAPTER - I INTRODUCTION  

1.1. GENERAL INTRODUCTION 

Statistical inference in time series regression models is a comprehensive area of 

statistical analysis that focuses on understanding and forecasting data that is 

collected over time. Time series data is unique in that it is sequentially dependent, 

meaning that observations in the series are dependent on previous observations. This 

characteristic distinguishes time series analysis from other types of statistical 

analysis. 

Here's a general introduction to this topic: 

1. Understanding Time Series Data: Time series data is a collection of 

observations recorded at regular time intervals. This could be anything from 

daily stock prices to yearly climate data. What makes time series data special 

is its chronological order. 

2. Components of Time Series: A time series can be broken down into several 

components: 

 Trend: The long-term movement in the data over time. 

 Seasonality: Regular patterns that occur on a predictable cycle, like 

monthly or quarterly. 

 Cyclical Components: Fluctuations that are not of a fixed frequency. 

 Random or Irregular Movements: These are unpredictable and 

don't follow a pattern. 

3. Time Series Regression Models: These models are used to predict or 

forecast future values in the series based on past values. The most basic 

model is the linear regression model, but time series data often require more 

sophisticated approaches due to factors like trend, seasonality, and 

autocorrelation (the correlation of a variable with itself across different time 

lags). 

4. Statistical Inference in Time Series: This involves estimating the 

parameters of your model, testing hypotheses, and making predictions. Key 

steps include: 

 Model Identification: Determining the appropriate model to fit the 

data. 
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 Parameter Estimation: Estimating the model parameters using 

methods like Maximum Likelihood Estimation or Ordinary Least 

Squares. 

 Diagnostic Checking: Assessing the adequacy of the model by 

looking at the residuals. 

 Forecasting: Using the model to predict future values in the time 

series. 

5. Challenges and Considerations: 

 Autocorrelation: In time series data, current observations might be 

correlated with past observations, which can violate the assumptions 

of standard regression models. 

 Non-Stationarity: If a time series is non-stationary, its statistical 

properties like mean and variance change over time, which can affect 

the model's performance. 

 Model Selection and Overfitting: Choosing the right model 

complexity is crucial to avoid overfitting. 

6. Advanced Models in Time Series Analysis: Apart from linear regression, 

there are several advanced models like ARIMA (Autoregressive Integrated 

Moving Average), Seasonal Decomposition of Time Series (STL), and 

Vector Autoregression (VAR) that are widely used for more complex time 

series data. 

7. Applications: Time series regression models are widely used in various 

fields such as economics (for forecasting GDP, unemployment rates), finance 

(stock prices, exchange rates), environmental science (climate modeling), 

and many more. 

In summary, statistical inference in time series regression models is a vital tool in 

the analysis and forecasting of data collected over time. It requires a solid 

understanding of the unique characteristics of time series data and the application of 

specialized models and techniques to analyze and make predictions based on this 

data. 

1.2. CLASSIFICATION OF TIME SERIES REGRESSION MODELS 

The various time series regression models existing in the literature can be broadly 

divided into four groups namely,  
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i. Univariate Linear Time Series Regression Models.  

ii. Univariate Non-linear Time Series Regression Models.  

iii. Multivariate Linear Time Series Regression Models.  

iv. Multivariate Non-linear Time Series Regression Models.  

Following are some important time series regression models given in the literature: 

1. Autoregressive Model with order ‘p’: AR (p)  

2. Moving Average Model with order ‘q’: MA (q)  

3. Autoregressive Moving Average (ARMA) Model: ARMA (p, q) 

4. Autoregressive Integrated Moving Average (ARIMA) model: ARIMA  (p, d, 

q).  

5. Autoregressive Distributed Lag Models.  

6. Covariance Stationary Models.  

7. State-space Models. 

8. Dynamic Macro Econometric Models.  

9. Linear Time Series Models based on State –space processes.  

10. ARMA Models based on State –space processes.  

11. ARIMA Models based on State-space processes.  

12. Unobserved Components Time Series Model.  

13. Linear Time Series Model with Time varying coefficients.  

14. Non-stationary Time Series Regression Models.  

15. Time series Models of Changes in Regimes.  

16. Autoregressive Conditional Heteroscedasticity (ARCH) Model.  

17. Generalized ARCH (GARCH) Model. 

18. Integrated GARCH (IGARCH) Model.  

19. Treshold ARCH (TARCH) Model.  

20. Exponential GARCH (EGARCH) Model.  

21. Regime Switching Time Series Models.  

22. Time Series Model with Non-stationary Regressors.  

23. Vector Autoregressive (VAR) Model: VAR (p). 

24. Vector Error Correction Model (VECM). 

25. Simultaneous Structural Equations Time Series Regression Model.  

26.  Vector Moving Average (VMA) Model: VMA (q). 

27. Vector ARMA Model: VARMA (p, q).  
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28. Vector ARIMA Model: VARIMA (p, d, q).  

29. Bayesian VAR Model: BVAR (p).  

30. Multivariate Time Series Models with Rational Expectations.  
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CHAPTER - II SOME IMPORTANT UNIVARIATE TIME SERIES 

REGRESSION MODELS 

2.1. INTRODUCTION 

In univariate time series regression models, the regressor variable is time.  A linear 

trend relationship can be written as 

Y T       (2.1.1) 

Where T indicates time. The T variable may be specified in many ways. But each 

specification requires to define the origin from which time is measured and the unit 

of measurement that is used. 

When T has zero mean, the normal equations for fitting (2.1.1) will become 

  
2

Y
a Yand b

T


 


 

When variables display trends, successive values tend to be fairly close together. 

One way of modelling such behaviour is by means of autoregression. The simplest 

autoregressive model is 

 

  t t 1 tY Y          (2.1.2) 

 

This is called a first order autoregressive model and is denoted by AR(1). The order 

indicates the maximum lag in the equation. 

From the equation (2.1.2), we make the following assumptions about   variable 

   iE 0   for all i 

   2 2

iE     for all I      (2.1.3) 

   i jE 0   for all i j       
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These assumptions define a white noise series. Here the crucial question is, how 

does the Y series behave over time. Assuming that process stated a very long time 

ago, we take  

    2 2

t t t 1 t t 2Y 1 ...... .....              (2.1.4) 

    2

tE Y 1 .......     

This expectation exists only when the infinite geometric series on the right hand side 

has limit. The necessary and sufficient conditions is 1  . 

The expectation is then 

   tE Y
1


  


      (2.1.5) 

 Here variance Y will be 

   
2

2

y 2
Var Y

1


  


      (2.1.6) 

The Y series has a constant unconditional variance, independent of time.  

The covariance of Y with a lagged value itself is known as autocovariance. 

The lag auto covariance is defined as 

  
s 2

s y s 0,1,2,          (2.1.7) 

So that first lag autocovariance is  

  
z

1 y   

The autocovariances depend only on the lag length and are independent of t 

Dividing the covariances by the variance gives the autocorrelation coefficients, also 

known as series correlation coefficients. These will be defined as 
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 s s o    , s = 0, 1, 2…….    (2.1.8) 

 Where z

o u    

Plotting the autocorrelation coefficients against the lag lengths gives the correlogram 

of series. 

When | | 1   the mean, variance, and covariances of Y series are constants 

independent of time. The Y series is then said to be weekly or covariance stationary.  

When 1  , the AR(1) process is said to have unit root. The equation becomes. 

  t t 1 1Y Y          (2.1.9) 

Which is called a random walk with drift. 

The conditional expectation and conditional variance are  

   t 0 oE Y Y at Y   

 

Which increases or decreases without limit as t increases 

   2

t 0Var Y Y t   

Which increases without limit 

In this case the unconditional mean and variance do not exist. The Y series is then 

said to be nonstationary. 

2.2. AUTOREGRESSIVE MODEL WITH ORDER p : AR(p)  

A common approach for modelling univariate time series is the autoregressive (AR) 

model 

The AR(p) model is defined as 
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 t t 1 2 t 2 p t p tX X X .......... X              (2.2.1) 

where Xt is the time series, 
p

i

i 1

1 ,


 
     

 
  where   is the process mean 

 t  is the white noise 

 1 2 p, ........    are the parameters of the model 

 p is the order of the AR model 

Some constraints are necessary on the values of the parameters of this model so that 

model remains wide-sense stationary. For an AR(P) model to be wide-sense 

stationary, the roots of the polynomial 
p

p p i

i

i 1

Z Z 



   must lie within the unit circle, 

i.e., each root Zi must satisfy 
i| Z | | . 

Estimation of AR Parameters 

 The AR(p) model is given by the equation  

 
p

t i t i t

i 1

X X 



          (2.2.2) 

 It is based on the parameters i  where i=1, ……, p. 

There is a direct correspondence between these parameters and the covariance 

function of the process. This correspondence can be inverted to determine the 

parameters from the autocorrelation function by using yule-walker equations.  

 

p
2

m t m,0k m k
k 1




            (2.2.3) 

where,  m=0,1, … p. yielding p+1 equations. 

  m  is the autocorrelation function of x 

 


 is the standard deviation of the input noise process 
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  m,0  is the Kronecker delta function 

The last part of the equation is non-zero only if m=0. Hence the equation is solved 

by representing it as a matrix for m>0. Thus we get the equation. 

1

0 1 2 1

2

1 0 1 2

3

2 1 0 3

......

......

......
:

:

 



 
       

         
     
       
    
     

 

Solving all  can be obtained. 

For m =0, 

 
p

2

0 k k t

k 1





       

Which allows us to solve 2


 

The above Yule-walker equations provide one root of estimating the parameters of 

an AR (p) model, by replacing the theoretical covariances with estimated valves. 

One way of specifying the estimated covariances is equivalent to a calculation using 

least squares regression of values tX  on the p previous values of the some series.  

Derivation 

The equation defining the AR process is 

 
p

t i t i t

i 1

X X 



    

Multiplying both sides by t mX  and taking expectation,  

  
p

t t m i t i t m t t m

i 1

E X X E X X E X   



 
       

 
  

By the definition of autocorrelation function, 
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  t t m mE X ,X     

The values of noise function are independent of each other and t mX   is independent 

of t  when ‘m’ is greater than zero. 

                For m>0  

  t t mE x 0   

 For m=0, 

  
p

t t m t i t i t

i 1

E X ,E X 



  
     

  
   

    
p

2

i t t i t

i 1

E X E



        

   = 2

t0         

                                    = 2

t       (2.2.4) 

Now, we have for m 0  

 
p

2

m i t i t m t m

i 1

E X X 



 
     

 
  

Further 

  

 
p p

i t i t m i t t m i

i 1 i 1

E X X E X X   

 

 
   

 
   

             = 




 
p

i m i
i 1

 

Which  yields the Yule-Walkes equations. 



 

Time Series Regression Models 

©Sahasra Publications 11 

 
p

2

m i m i t m

i 1

for m 0



           (2.2.5) 

              For m<0, 

 
m m     

 
p

2

i |m| i m

i 1

 



          (2.2.6) 

2.3. MOVING AVERAGE MODEL WITH ORDER q : MA (q) 

In time series analysis, the moving average (MA) model is common approach for 

modelling univariate time series models. The moving average model with order 

qMA(q) is 

  t t 1 t 1 q t qX .......            (2.3.1) 

Where,   is the mean of the series, 

  1, 2 q......,    are the parameters of the model, 

  t t 1, ,..........   are white noise error terms. 

  q is the order of the moving average model. 

2.4. AUTOREGRESSIVE MOVING AVERAGE (ARMA) MODEL 

Box and Jenkins popularized an approach that combines the moving average and the 

autoregressive approaches. ARMA models have developed in three directions–

efficient identification and estimation procedures (for AR, MA and mixed ARMA 

processes) and model validation. This model is flexible due to the inclusion of both 

autoregression and moving average terms. 

It is convenient to use the notation ARMA (p, q), where p is the order of the 

autoregressive part and q is the order of the moving average part. 

 The general AR (p) model was represented as 
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 t 1 t 1 2 t 2 p t p tX X X ........ X              (2.4.1) 

 

 Multiplying both sides by  Xt-k yields 

 t k t 1 t k t 1 2 t k t 2 p t k t p t k tX X X X X X .......... X X X               

 Taking expected value both sides and assuming stationarity gives 

 k 1 k 1 2 k 2 p k p......              

 Where 
k is the covariance between tX  and t kX   

 The MA (q) model is written as 

  k t 1 t 1 2 t 2 q t qX e e e ................. e       

 Multiplying bothsides by t kX   yields 

 

 t k t t 1 t 1 2 t 2 q t qX X e e e ........... e x        t k 1 t k 1 2 t k 2 q t k qe e e ........... e        

          (2.4.2) 

 The expected value of the above equation will depend upon the value of k. 

 If k=0, and all other terms of the equation on (2.4.2) dropout because            

    2

t t i t t i eE e e 0 for i 0 andE e e for i 0     . 

Thus (2.4.1) becomes 

 
2 2 2 2 2 2 2

0 e 1 e 2 e q e........           

 

To obtain the initial estimates for ARMA models, combine AR and MA models: 

     k 1 t t k p t p t k t t kE x x ........ E X X E e X           



 

Time Series Regression Models 

©Sahasra Publications 13 

    1 t 1 t k q t q t kE e X ..... E e X         (2.4.3) 

If  k>q, the terms  t t kE e X 0   which leaves 

 k 1 k 1 2 k 2 p k p.....              

When k<q, the past errors and the Xt-k will be correlated and the autocovariances 

will be affected by the moving average part of the process, requiring that it will be 

included. The variance and autocovariances of an ARMA (1,1) process are therefore 

obtained as follows: 

  t 1 t 1 t 1 t 1X X e e      

 Multiplying bothsides by Xt-k gives 

  t k t 1 t k t 1 t k t 1 t k t 1X X X X X e X e          

 Taking expected values both sides results in 

 

        t k t t k t 1 t k t 1 t k t 1E X X E X X E X e E X e          

If k=0 

   0 1 1 1 t 1 t 1 t 1 t 1 1 t 1 t 1 t 1 t 1E X e e e E X e e e                       (2.4.4) 

 

 Since  t 1 t 1 t 1 t 1x k e e      

  2 2

0 1 1 e 1 1 1 e          

Similarly if k=1 

 2

1 1 0 1 e            (2.4.5) 

Solving the equations (2.4.2) ad (2.4.3) for 0  and 1  we get 
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2

1 1 1
0 2

1

1 2

1

   
 


      (2.4.6) 

  
  1 1 1 1

1 2

1

1

1

   
 


     (2.4.7) 

Dividing (2.4.5) by (2.4.4) gives 

 
  1 1 1 1

1 2

1 1 1

1

1 2

   
 

   
     (2.4.8) 

2.5.  AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (AIMA) 

MODEL 

A non-seasonal ARIMA model is classified as an ARIMA (p,d,q) model,  

Here,    p is the number of autoregressive terms,  

 d is the number of non seasonal differences and 

 q is the number of lagged forecast errors in the prediction equation  

 Generally ‘d’ may be taken as 0, 1 or occasssionaly 2. 

To identity the appropriate ARIMA model for a time series, one has to begin by 

identifying the order (r) of differencing needing to stationarize the series and remove 

the gross features of seasonality, in conjunction with a variance–stabilizing 

transformation such as lagging or deflating. 

The equation for the simplest case ARIMA (1, 1, 1) is as follows  

      1

1 t 1 t1 B . 1 B X 1 B e        

 The terms can be multiplied out and rearranged as follows.  

 
2 1

1 1 t t 1 t 11 B (1 ) B x e e 
            

 1

t 1 t 1 2 t 2 t 1 t 1X (1 )X X e e             (2.5.1) 
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In this form, the ARIMA model looks more like a conventional regression equation, 

except that there is more than one error term on the right hand side. ARIMA models 

are quite flexible and can represent a wide range of characteristics of time series that 

occur in practice.  

ARIMA  Model : pth order autoregressive model 

 t 0 1 t 1 2 t 2 p t p tY Y Y ....... Y               (2.5.2) 

ARIMA Model: qth order moving average model 

 t t 1 t 1 2 t 2 q t qY W W ...........W t            (2.5.3) 

ARIMA Model: ARMA (p, q) model 

 t 0 1 t 1 2 t 2 p t p tY Y Y ........... Y             

 1 t 1 2 t 2 q t qW W ..........W           (2.5.4) 

ARIMA (0, 1, 1) Model 

 
t 1t t 1 t 1Y Y w
           (2.5.6) 

2.6. AUTOREGRESIVE DISTRIBUTED LAG MODELS (ARDL) 

In case where the variables in the long-run relation of interest are trend stationary, 

the general practice has been to de-trend the series and to model the detrended series 

as stationary distributed lag or autoregressive distributed lag (ARDL) models. 

Estimation and inference concerning the long-run properties of the model are then 

carried out using standard asymptotic normal theory. The analysis becomes more 

complicated when the variables are difference–stationary, or integrated of order 1. 

The auto-regressive distributed lag model with p lags of dependent variable Yt and q 

lags of additional regressor Xt, ADL (p, q) is defined as: 

t 0 1 t 1 p t p 1 t 1 q t q tADL(p,q) Y Y ...... Y X .... X                (2.6.1) 
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  t 0 t 1(L)Y L X      with lag-polynomials defined by 

 t 1 p p(L)Y 1 L ............ L      

 1 2 q q 1(L) L ....... L              (2.6.2) 

k additional predictors = ADL  1 kp,q ,.........,q     (2.6.3) 

        t 0 1 1,t 1 2 2,t 1 k k,t 1L Y L X L X ..... L X         

Model Assumptions 

(1). t t 1, t 2, 1t 1 1t 2, k kt 2t 1
E u Y ......,X ,X ...... X , X ..... 0    
       (2.6.4) 

(2) (a).  t , 1t , ktY X ....... X are (strictly) stationary 

     (b).  t , 1t , ktY X ......., X are ergodic     (2.65) 

   t , 1t, kt t j, 1t j kt jY X .......,X and Y X ,.....,X    becomes independent for j  

(3). t 1t, ktY and X ......,X have  nonzero, finite fourth moments 

(4). no perfect multicollinearity  

2.7. NON STATIONARY TIME SERIES REGRESSION MODELS 

A time series Xt is said to be stationary if its expected value and population variance 

are independent of time and if the population covariance between its values at time t 

and t+s depends on s but not on time. 

An example of a stationary time series is an AR (1) process  

  t 2 t 1 tX X         (2.7.1) 

 Here 21 1    and  t  is white noise 

If equation (2.7.1) is valid for time period t, it is also valid for time period t-1 i.e. the 

series is stationary. 
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  t 1 2 t 2 t 1X X     

Substituting for Xt-1 in equation (2.7.1), we get 

  2

t 2 t 2 2 t 1 tX X        

Continuing this process of lagging and substituting, we get 

 t t 1

t 2 0 2 1 2 t 1 tX X ..................

           (2.7.2) 

In the previous examples, if 
2  is equal to 1, the original series becomes 

 t t 1 tX X           (2.7.3) 

This is an example of a nonstationary process which is known as a random walk. 

If it starts at X0 at time 0, its value at time t is given by 

 t 0 t tX X .....           (2.7.4) 

The key difference between this process and the corresponding A.R(1) process is 

that the contribution of each innovation is permanently built into the time series. By 

contrast, when 2 1,   then contribution of each shock to the series is exponentially 

attenuated and eventually becomes negligible. In the more general version of the 

autogressive process with the constant 1,  the process becomes a random walk with 

drift, if 2 equals1. 

 t 1 t 1 tX X           (2.7.5) 

If the series starts at X0 at time 0, Xt is given by 

 t 0 1 1 tt
X X ........      

The expectation of Xt at time ‘0’ ,  0 1t
X   is a function of ‘t’. Another common 

example of a nonstationary time series is one possessing a time trend: 

  t 1 2 tX t         (2.7.6) 
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This type of trend is sometimes described as a deterministic trend. The expected 

value of Xt at time ‘t’  1 2t  is not independent of t and so Xt is nonstationary.  

The key difference between a deterministic trend and a random walk with drift is 

that in the former, the series must keep coming back to the trend line. In any given 

observation, Xt will be displaced from the trend line by an amount t , but apart 

from transitory effect it must adhere to the trend line. By contrast, in a random walk 

with drift, the displacement from the underlying trend line at time t is the random 

walk t , plus the displacement at time 0. 

2.8. UNOBSERVED COMPONENTS TIME SERIES MODEL 

The observed series (yt) is defined as the sum of various components  i

tu ,i 1.....I,  

generally unobservable.  

 The moles is 
I

i

t t

i 1

y U


       (2.8.1) 

Here we assume that the subprocesses  i

tu i 1,.....,  I are independent of each other 

and we specify their marginal distributions or atleast the two first moments of these 

distributions. 

2.8.1. Seasonal Adjustment in ARIMA Components Models 

When the components ui admit ARMA or ARIMA representations, they can also be 

put in state-space form of the type. 

  i i i

t 1 i t tZ A Z         (2.8.2) 

  i i

t iu 1,0,......,0 Z  

 Where the errors  i are independent. 

The set of state variabels associated to various comparnets as state variable are 
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1 1

t 1 1 t

t 1 t

I I

t 1 I t

Z A 0

Z : Z

Z 0 A







    
    

      
        

    (2.8.3) 

 Yt = (1,0,………,0,1,0…..,1,0,…..0) Zt 

This form can be used for estimation. After specifying the way the matrices Ai and 

 i

iV   depend on the underlying parameters  , we use the Kalman filter to compute 

the likelihood function. Kalman smoothing applied to the model (2.8.3) provides 

some apprepriamations of the state variables such as, E(z/Yt …., YT), t=1…. T. The 

underned components are coordinates of this state vector. Hence the smoothing 

provides some approximation of the state variables such as, 

 t t TE Z Y .......,Y , t 1....T . The undeserved  components are coordinates of this 

state vector. Hence the smoothing provides some approximation of the various 

components.  

   i i

T t 1 Tu E u / Y ,.......,Y  

Hence we can obtain a disaggregation of the initial series at each date
I

i

t t

i 1

Y u


 . 

2.8.2. Application to Seasonal Adjustment 

The approach of the seasonal adjustment problem by regression is based on a 

decomposition of the original series into three components: trend, seasonal, and 

noise. Trend is often described by a polynomial and the seasonal can be described by 

a strictly periodical series. Here the trend and seasonal components modelled is 

restrictive. Hence this type of decomposition is not very simple 

By the symmetrical approach for various components, we get 

 T s I
t t t tY u u u    for t 0       (2.8.4) 

Here the first one is trend, second seasonal and third is irregular part. Here each 

component is assumed to admit a suitable ARIMA representation. 
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To model the trend   we can take a representation with a unit root in the 

autoregressive part 

  
 

 
TT T

t t

L
1 L u t

L

 


 


      (2.8.5) 

Here 
T  and

T  have roots outside of the unit circle and where the noise is of 

variance 2

T  

In order to model the seasonal component of period S, we can take an autoregressive 

part divisible by  
S

S 1 1 L
S L 1 L ...... L

1 L

 
    


 

  
 

 
 ss s s 2

t t t s

s

L
S L u ,Var t

L




   


     (2.8.6) 

The irregular part can be modelled by a stationary ARMA 

 
 

 
 II I I 2

t T t I

I

L
u ,Var

L




    


      (2.8.7) 

 The overall model relative to the initial series is 

 
 

 

   

 

 

 

 

L L L

T s IsT I
t t t Td L L L

T s I

1 1
Y t

S L1 L

   
    

  
   (2.8.8) 

The ARIMA representation of the series y is deducted from the pseudo spectrum 

 
 

2
2

TT
Y 2d 2

T

exp (iw)
f w

2 1 exp(iw) (exp(iw)




  

 
2

2
ss

2 2

s

exp(iw)

2 S(exp(iw)) (exp(iw))




 
 

  
 

   

2
2

IT

2

I

exp(iw)

2 exp iw




 
 

This can be written as 
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   
 

 

2
2

Y 2

G exp(iw)
f w

2 1 exp(iw




 
 

Here the derivation of the variance of the noise 2  and of the moving average 

polynomial G is difficult. Their expressions depend on the initial parameters 

2 2 2

T s I S I T s I, , , , , , ,        in a complex way. This explains why the use of the state-

space representation for the estimation simplifies this process. This representation is 

particularly well–suited for the estimation of the components, trend, seasonal and 

irregular part.  

2.8.3. Optimal Moving Average 

If we assume that the initial series satisfies an unobserved component model with 

stationary components, the best estimator of s

t ty u  is a linear function of the 

observations because of model linearity. 

  
T t

SA s

t t t 1,...., T j, t, T t j

j 1 t

Y E Y u Y Y a Y




 

        (2.8.9) 

We get an approximate solution replacing (y1….yT ) by (yt, t =  , …… ) 

   SA

t i t j

j

Y a Y






    

Here the coefficients are independent of the indexes t and T. The optimal 

determination of the seasonal adjustment is done through the application of a 

moving average 
j

j
j

a L



 . 
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CHAPTER - III SOME IMPORTANT MULTIVARIATE TIME 

SERIES REGRESSION MODELS 

3.1. VECTOR AUTOREGRESSION MODEL 

3.1.1. Introduction 

In the general practice, it is not known in prior whether the time path of the 

dependent variable has affected the independent variable.  Bass (1969)  warned that 

advertising may be influenced by current and past sales, and should not 

automatically be treated as exogeneous.  This means that not only marketing 

activities influence sales, but change in sales may also induce marketing activities.  

Marketing Managers may track own-brand market share or sales, and if they observe 

a drop in either performance measure, they may tend to compensate it with charges 

in marketing activities. In its basic form, multiple time series analysis treats all 

variables symmetrically without making reference to the issue of dependant versus 

independence and permits causality testing of all variables simultaneously.  This is a 

major advantages of multiple time series analysis models. 

The multiple time series analysis methodology applies iterative processes that 

identify basic models, the lag structure, and relationships between variables, 

estimate the parameters and check the estimated model.  Multiple time series 

analysis models have been shown to be extremely flexible in capturing the dynamic 

interrelationships between a set of variables, to be able to treat several variables 

endogeneously, not to require firm prior knowledge as the nature of the different 

relationships, to be able to capture both short and long run inter-relationships and to 

outperform multivariate time series analysis models in parameter efficiency, 

goodness-of-fit measures as well as in forecasting performance.     

Vector  Autoregression (VAR) is a model used to capture the evolution and the 

interdependencies between multiple time series, generalizing the univariate AR 

models.  All the variables in a VAR are treated symmetrically by including an 

equation for each variable, explaining its evolution based on its own lags of all the 
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other variables in the model.  A VAR model describes the evolution of a set of k 

variables, called endogeneous variables, over the sample period (t = 1,……T) as a 

linear function of  only their past evolution.  The variables are collected in a kx1 

vector Yt. Here Yit is the ithelement of the time t observation of variable  Yi.  

3.2. VAR (p) MODEL 

 A, pth order VAR model which is denoted by VAR (P), is   

 t 1 t 1 2 t 2 p t p tY C A Y A Y ..... A Y            (3.2.1) 

 Here  C is  K x 1 vector of constants (intercept) 

           Ai is a kxk matrix of error term satisfying  

1) E ( t ) = 0  every errors term has mean zero 

2) 1

t t kE ( ) 0   for non-zero k – there is no correlation, across time, in 

particular, no serial correlation individual errors. 

The  t-period back observation t 1y   is called the tht  lag of y.  Hence, a thp  order 

VAR is also called a VAR with p lags.  All the variables used have to be of the same 

order of integration. We  have the following different cases, 

 All  the variables are 1 (0) (stationary): one is in the standard case. 

 All the variables are 1 (d) (non-Stationary) with d > 0. 

 The variables are cointegrated the error correction term has to be included in 

the VAR.  The model becomes a vector error correction model.  It can be 

seen as a restricted VAR. 

 The variables are not cointegrated the variables have first to be differenced 

‘d’ times and me has a VAR in difference. 

 

 A VAR (p) process with k variables: 

t 1 t 1 2 t 2 p t p t tY C A Y A Y ..... A Y t e )            (3.2.2) 
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 Where each Yf is kx1 vector and each Aj is a kxk matrix. 

 Large matrix notation is  

1 1 1 p p p
1,t 1 1,1 1,2 1,k 1,1 1,2 1,k

1 1 1 p 1 1
2,t 2 2,1 2,2 2,k 2,1 2,2 2,k

1 1 1 1 1 1
k,t k k,1 k,2 k,k k,1 k,2 k,k

y c a a . . a a a . . a

y c a a . . a a a . . a

. . . .. . . . . . . . . . .

. . . . . . . . . . . .

y c a a . . a a a . . a

     
    
    
       
    
    
        

1,t p 1,t

2,t p 2,t

k,t p k,t

y e

y e

. .

. .

y e







    
     
     
     
     
     
     

   

 

Concise matrix notation 

 VAR (P) with k variables in a general way includes ‘T+1’ observations Y0 

through YT. 

 Y BZ U   Where p p 1........ TY [ y y y ]    (3.2.3) 

 

1,p 1,p 1 1,T

1

2,p 2,p 1 2,T

k,p k,p 1 k,T

y y . . y

y y . . y

. . . . .

. . . . .

y a . . y







 
 
 
 
 
 
 
 

 

1 2 pB [C A A ...A ]  

1 1 1 p p p

1 1,1 1, 2 1, k 1,1 1, 2 1, k

1 1 1 p p p

2 2,1 2, 2 2, k 2,1 2, 2 2, k

1 1 1 p p p

k k,1 k, 2 k, k k,1 k, 2 k, k

c a a ...... a ...... a a ....... a

c a a ...... a ...... a a ....... a

. . . . . . .

. . . . . . .

. . . . . . .

c a a ...... a ...... a a ....... a

 
 
 
 
 
 
 
 
 
  
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p 1 p T 1

0 1 T p

1 1 1

y y y

. . .
Z

. . .

. . .

y y y

 



 
 
 
 
 
 
 
 
 
 

   -   

1,p 1 1,p 1,T 1

2,p 1 2,p 1,T 2

k,p 1 k,p k,T 1

1,p 2 1,p 1 1,T 1

2,p 1 2,p 1 1,T 2

k,p 2 k,p 1 k,T 2

1,0 1,1 1,T p

k,0 k,1 k,T p

1 1 1

y y y

y y y

. . .

. . .

. . .

y y y

y y y

y y y

. . .

. . .

. . .

y y y

. . .

. . .

. . .

y y y

. . .

. . .

. . .

y y y

 

 

 

  

  

  





































































 
 
 
 
  

 

and 

1,p 1,p 1 1,T

2,p 2,p 1 2,T

k,p k,p 1 k,T

e e ...... e

e e ...... e

. . .
U

. . .

. . .

e e ...... e







 
 
 
 
 
 
 
 
 
  

  

One can solve for the coefficient matrix B (using an ordinary least squares 

estimation). 

3.2.1. Vector Auto Regressions 

VAR (1); Let k =2 and P = 1 in (3.2.2) 

1,t 11t 1t1 11 12

2,t 12t 2t2 21 22

t

yy ec a a
Y

yy ec a a





       
          

       
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t 1 tC Ay e          (3.2.4) 

In all VARs, each variable is expressed as a linear combination of lagged values of 

itself and lagged values of all other variables in the group. 

Let the eigen values and eigen vectors of the matrix A be  

 
1

1 2

2

. .
0

K c c
0

. .

 
   

         

 

Provided the eigen values are distinct, the eigen vectors will be linearly independent 

and c will be non-singular.  It then follows that   

1 1K AK and A K K      

Define a new vector of variables Zt as 

1

t t t tZ K Y or Y KZ        (3.2.5) 

The process of pre-multiplying equation (3.2.4) by 1C  and simplifying  gives 

 *

t t 1 tZ C z            (3.2.6) 

* 1 1

t tC K C and K e     which is a white noise vector. 

Each Z variable follows a separate A.R.(1) scheme and is stationary,  I(0), if eigen 

value has modulus less than1, I(1), if eigen value is 1 and is explosive if eigen value 

exceeders 1.  

The extension of higher-order system is simple as shown below: 

 A second order system is  

t 1 t 1 2 t 2 tY C A Y A Y e      

Subtracting  t 1Y   from each sides gives  
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t 1 t 1 2 t 2 tY C (A I) Y A Y e           (3.2.7) 

The  process of adding and subtracting 1 t 2(A I) Y    on the right hand side 

and simplifying results in  

t 1 t 1 t 2 tY C (A I) Y Y e             (3.2.8) 

Where 
1 2I A A     

An alternative representation is  

t 2 t 1 t 1 tY C A Y Y e             (3.2.9) 

In the first  difference reformulation of a second-order system, there will be one 

lagged first difference term on the right-hand side.  The levels term may be lagged 

one period or two. 

If we proceed similarly VAR (P) system defined in (13.2.4) may be    re- 

parameterized as  

t 1 t 1 p 1 t p 1 t 1 tY C B Y ...... B Y Y e                 (3.2.10) 

 

Where Bs are functions of the Asand 1 pI A ......... A     . 

The behaviour of the Y vector depends on the values of   that solve     

p p 1

1 p 1 1I A ... A A

      = 0.  There three possibilities of roots. 

1. Rank ( ) k  .  If each root has less than one,   will have full rank and is 

non-singular.  All the Y variables in (3.2.1) will be I (0) and unrestricted 

OLS estimates of equation (3.2.1) or (3.2.10) will find identical influences 

about the parameters. 
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2. Rank ( ) r k.     This will occurs if there is a unit root will multiplicity (k-r) 

and the remaining r roots are numerically less than one.  The  Y vector will 

be I(1) or higher and   may be expressed as the outer product of two (k x r) 

matrices, each rank r.  The right hand side of equation (3.2.10) then contains 

r integrating variables. 

3. Rank ( ) 0  .This is a special case.  It will only occur if 1 pA ..... A I    in 

which case 0  and equation (3.2.10) shows that VAR should be specified 

solely in terms of first differences of the variables. 

3.3. ORDINARY LEAST SQUARES ESTIMATION FOR VAR MODEL 

3.3.1. Introduction    

Consider matrix notation of a VAR (p):   

Y BZ U          (3.3.1) 

The multivariate least square (MLS) for B yields. 

1 1 1B̂ YZ (ZZ )        (3.3.2) 

 It can be written alternatively as  

 Vec 1 1

k
ˆ(B) (Z Z) Z I ) Vec (Y)       (3.3.3) 

Here   denotes the Kronecker product and Vec the vectorization of the matrix Y.  

This estimator is consistent and asymptotically efficient.  It is equal to the 

conditional maximum likelihood estimator.  As explanatory variables the same in 

each equation, the Multivariate Least Square is equivalent in the ordinary least 

squares estimator applied to each equation separately. 

3.3.2 Estimation of the covariance matrix of the error  

As in the standard case, the MLE estimator of the covariance matrix differs from the 

ordinary least squares estimator.  
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T

1

t t
t 1

1ˆ ˆ ˆMLE estimator
T 

        (3.3.4) 

OLS estimator 
T

1

t t
t 1

1ˆ ˆ ˆ
T kp 1 

  
 

 for a model    (3.3.5) 

 With a constant, k variables and p lags. 

 In a matrix notation this gives  

  
11ˆ ˆ ˆ(Y BZ) (Y BZ)

T kp 1
   

 
    (3.3.6) 

Estimation of the estimator’s covariance matrix.  The covariance matrix of the 

parameters can be estimates as   

1 1 ˆˆˆcov (vec(B)) (Z Z)      (3.3.7) 

3.4. FULL INFORMATION MAXIMUM LIKELIHOOD METHOD OF        

ESTIMATION 

3.4.1. Introduction 

Let tY  denote an (nx1) vector.  Here the hypotheses is that tY  follows a VAR (p) in 

levels 

 Any Pth    order VAR can be written in the form  

t 1 t 1 2 t 2 p 1 t p 1 0 t 1 tY Y Y ...... Y Y                     (3.4.1) 

With  1 for t T
t t1 0 otherwiseE (t ) 0,E (t t )     

Suppose that each individual variable itY  is I (i), although h linear combinations of 

Yt are stationary. 

0  can be written in the for m 1

0 BA       (3.4.2) 
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For B an (nxn) matrix and 1A  an (nxn) matrix. Under the hypothesis of h 

cointigrating relations, only h separate linear combinations of the level of t 1Y   (The 

h elements of 1

t 1 t 1z A Y  ) appear in (3.4.1) 

Consider a sample of T + p observations on Y, denoted as   

p 1, p 2 T(Y Y ,.......Y )     

 

If the disturbances t  are Gaussian, then the log likelihood  of
1 2 T(Y , Y ......Y )  

conditional on p 1 p 2 0(Y , Y ,....,Y )     is given by 

1, 2, p 1, 0L ( , .... , )      2T T
log (2 ) log 1 1

2 2

   
      
   

 

T
1

t 1 t 1 2 t 2 p 1 t p 1 0 t 1

t 1

1
( Y Y Y ..... Y Y )

2
     



 
              
 

  

1

t 1 t 1 2 t 2 p 1 t p 1 0 t 1( Y Y Yy ..... Y Y )

                     (3.4.3) 

Here the problem is to chose 1, 2, p 1, 0( , .... , )       so as to  maximize  (3.4.3) 

subject to the constraints that 0  can be written in the form of (3.4.2).Johansen’s 

algorithm can be used to calculate the maximum likelihood estimates. 

Step 1: Calculate Auxiliary regressions. 

 The first step is to estimate a (p-1)thorder  VAR for ty  

 That is, regress the scalar  ity  on a constant and all the elements of the 

vectors t 1, t 2, t v 1Y Y ...... Y       by OLS.  Collect the i = 1, 2,….n  OLS regressions 

in vector from as   
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t 0 1 t 1 2 t 2 p 1 t p 1 t
ˆˆ ˆ ˆ ˆY Y Y ...... Y u                 (3.4.4) 

Where 
i̂ denotes an (nxn) matrix of OLS coefficients estimates and tû  

denotes the (nx1) vector of OLS residuals. 

We also estimate the regressions, regressing the scalars i,t 1y   on a constant 

and t 1 t 2 t p 1Y , Y ...... Y for i 1,2,...., n       . 

The second set of OLS regressions can be written as  

t 1 1 t 1 2 t 2 p 1 t p 1 t
ˆ ˆˆ ˆ ˆY x Y x Y ..... x Y                  (3.4.5) 

Here t̂  is an (nx1) vector of residuals from the second battery of 

regressions. 

Step 2: Calculate canonical correlations  

 Calculatethe sample variance-covariance matrices of the OLS residuals 

t t
ˆû and   

  
T

1
t tVV t 1

1ˆ ˆ ˆv v
T 

         (3.4.6) 

  
T

1
t tUU t 1

1ˆ ˆ ˆu u
T 

         (3.4.7) 

  
T

1
t tUV

t 1

1ˆ ˆ ˆu v
T 

         (3.4.8) 

  
UV

1
VU

ˆ ˆ          

 From these, find the eigen values of the matrix  

  
1 1

VV VU UU UV
ˆ ˆ ˆ ˆ           (3.4.9) 
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With the eigen values order 1 2 n
ˆ ˆ ˆ...         

The maximum value attained by the log likelihood function subject to the constraint 

that there are ‘n’ cointegrating relations is given by 

       
n

* n n
uv i

i 1

T T ˆ ˆT TL log (2 ) log log (1 )
2 2 2 2 

         (3.4.10) 

Step 3: Calculate Maximum Likelihood Estimates 

Let 
1 2 n

ˆ ˆ ˆa ,a ,....a  denote the (nx1) eigen vectors of (3.4.9) associated with then largest 

eigen values. These provide a basis for the space of cointegrating vector can be 

written in the form  

  
1 1 2 2 n k
ˆ ˆ ˆa b a b a ..... b a     

For some choice  of scalars  
1 2 n(b , b ,....b ) .  Johansen suggested normalizing these 

vectors iâ  so that  i vv i
ˆˆ ˆa a 1  . 

For example , if the eigen vectors ia  of (3.4.9)  are calculated from a standard 

computer program that normalizes 
1

i ia a 1 . 

 Jahansen’s estimate is 1

i i i vv i
ˆâ a a a   . 

 Collect  the first h normalized vectors in an (nxn) matrix Â  

   1 2 n
ˆ ˆ ˆ ˆA [a ,a ,....a ]      (3.4.11) 

Then the MLE of 0  is given by 

   
1

0 uv
ˆˆ ˆ ˆAA    

The MLE of i , for i =1, 2, ….p-1 is 

1 i 0 i
ˆ ˆˆ x̂      
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And the MLE of   is 

0 0
ˆ ˆˆ ˆ       

The MLE of   is 

 1

il 0 t t t

1ˆ ˆˆ ˆ ˆ ˆ(u v ) (u v )
T

            
    (3.4.12) 

3.5. CONDITIONAL MAXIMUM LIKELIHOOD METHOD OF 

ESTIMATION 

Let tY  denote an (nx1) vector containing the values that n variables assume at date t.  

The dynamics of tY  are governed by a thp  order Gaussian vector autoregression. 

  t 1 t 1 2 t 2 p t p tY C Y Y ...... Y              (3.5.1) 

Where t i.i.d N (0, )   

Suppose that we observe each of these n variables for (T+p) time periods.  The 

simplest approach is to condition on the first p observations 

p 1 p 2 1(Y Y ...... Y )      and to base estimation on the last T observations               

(Y1, Y2, …. YT). The objective then is to form the conditional likelihood 

  
T T 1 1 0 1 p

T T 1 1 0 1 p i,Y ,Y .....Y Y ,Y ......Y
f Y ,Y .....Y Y ,Y ......Y ;


                               (3.5.2) 

and  maximize with respect to  . 

Here    is a vector that contains the elements of 1 2c, , ....  p and  . Vector 

autoregressions are invariably estimated on the basis of the conditional likelihood 

function (3.5.2) rather than the full-sample unconditional likelihood. 

For brevity, we hereafter refer to (3.5.2) as the “likelihood function” and the value of 

  that maximizes (3.5.2) as the maximum likelihood estimates.  
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Conditional on the values of y observed through date t-1, the value of y for date t is 

equal to a constant  

1 t 1 1 t 2 p t pC Y Y ..... Y       plus a N(0,  )   (3.5.3) 

Thus   t 1 t 2 p 1 1 t 1 2 t 2 p t pY Y .Y .....Y ~ N (c Y Y ...... Y ),               (3.5.4) 

 Let 
tX  denote a vector containing a constant term p and p lags of each  

           of the elements of y.  

   

t 1

t 2

t

t p

Y

Y

X .

.

Y







 
 
 
 
 
 
 
 

      (3.5.5) 

 Hence tX  is an [(np+1) x1] vector. 

 Let 1  denote the following [(nx(np+1) matrix  

   1

1 2 p[c, , ... ]          (3.5.6) 

The conditional mean (3.5.3) is equal to  1

tX . 

The jth row of  1  contains the parameters of the  jth equation in the VAR.  Using this 

notation (3.5.4) can be written as  

  
1

t t 1 t 2 p 1 tY Y .Y .....Y ~ N( X , )          (3.5.7) 

 The conditional density of the ith observation is   

  
t t 1 1 0 1 p

t t 1 1 0 1 p i,Y ,Y .....Y Y ,Y ......Y
f Y ,Y .....Y Y ,Y ......Y ;


    

 
1/ 2

n / 2 1 1 1 1

t t t t(2 ) exp [( 1/ 2) (y x ) (y x )]          (3.5.8) 
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 The joint density of observations through t conditioned on 0 t 1 p 1Y ,Y ,..... Y )  

satisfies  

   
t t 1 1 0 1 p

t t 1 1 0 1 p i,Y ,Y .....Y Y ,Y ......Y
f Y ,Y .....Y Y ,Y ......Y ;


       

   
t t 1 1 0 1 p

t t 1 1 0 1 p i,Y ,Y .....Y Y ,Y ......Y
f Y ,Y .....Y Y ,Y ......Y ;


      

   
t t 1Y / Y .....Y p 1 t t 1 1 0 1 p i,x f Y ,Y .....Y Y ,Y ......Y ;

         

Applying this formula recessively, the likelihood for the full sample  

T T 1 p 1Y .Y .....Y    conditioned in 0 1 p 1y , y ...y    is the product of the individual 

conditional densities. 

  
t t 1 1 0 1 p

T T 1 1 0 1 p i,Y ,Y .....Y Y ,Y ......Y
f Y ,Y .....Y Y ,Y ......Y ;


        (3.5.9) 

  
t t 1 1 0 1 p

T T 1 1 0 1 p i,Y ,Y .....Y Y ,Y ......Y
f Y ,Y .....Y Y ,Y ......Y ;


       

The sample log likelihood is obtained by substituting (3.5.8) in (3.5.9) and taking 

logs  

 
t t 1 t 2 p 1

T

y y y ....y t t 1 t 2 p 1

t 1

L ( ) log f (y y y ....y ; )
       



    

  
1nT

log (2 ) (T / 2) log
2

 
     

 
   (3.5.10) 

   
T

1 1 1

t t t t

t 1

1 [ (y x ) (y x )]
2





      

3.5.1. Maximum Likelihood Estimate of   

Let us consider the MLE of   which contains the constant term c and autoregressive 

coefficients i . 
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1
T T

1 1 1

[nx(np 1)] t t t t

t 1 t 1

ˆ Y X X X





 

   
     

   
      (3.5.11) 

  The thj  row of  1̂  is 

[1x (np 1)]

1
T T

1 1

jt t t t

t 1 t 1

1
i

ˆ Y X X X




 

   
     

   
      (3.5.12) 

Which is the estimated coefficient vector from an OLS regression of jtY  on tx . 

Thus, maximum likelihood estimates of the coefficients for the thj  equation of a 

VAR are found by an OLS regression of  jtY on a constant term and p lag of all of 

the variables in the system  

To verify  (3.5.11), write the sum appearing in the last term in (3.5.10)  

 
T

1 1 1 1

t t t t

t 1

[ (Y X ) (Y X )]



     

 
T

1 1 1 1 1 1 1 1 1

t t t t t t t t

t 1

ˆ ˆ ˆ ˆ[ (Y X X X ) (Y X X X )]



           (3.5.13) 

 
T

1 1 1

t t t t

t 1

ˆ ˆ ˆ ˆ[ ( ) X ] ( ( ) X ]



         

Where the thj  element of the (nx1) vector t̂ is the sample residual for observation t 

from an OLS regression tjY  on tX  

  1

t t t
ˆ ˆY X          (3.5.14) 

 

 Expression (3.5.13) can be expanded as  

 
T

1 1 1 1

t t t t

t 1

[ (Y X ) (Y X )]



     

 
T T

1 1 1 1 1 1 1 1

t t t t t t

t 1 t 1

ˆ ˆ ˆ ˆ ˆ ˆ[ ( 2 ( ) X X ( ) ( ) X  

 

             (3.5.15) 
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Consider the middle term in (3.5.15).  Since this is a scalar, it is unchanged by 

applying the ‘trace’ operator  

 
T T

1 1 1 1 1 1 1

t t t t

t 1 t 1

ˆ ˆ ˆ( ) X trace ( ) X 

 

 
        

 
   

  
T

1 1 1

t t

t 1

ˆ ˆtrace ( ) X



 
    

 
   (3.5.16) 

  
T

1 1 1

t t

t 1

ˆ ˆtrace ( ) x



 
    

 
  

But the sample residuals from an OLS regression are by construction orthogonal to 

the explanatory variables. 

 
T

1

j jt

t 1

ˆX 0


   for  j and so
T

1

t t

t 1

ˆX 0


  . 

 Hence  (3.5.16) is identically zero and (3.5.15) simplifies to  

  
T

1 1 1

t t t t

t 1

[ (Y X ) (Y X )]



    

 
T T

1 1 1 1 1 1

t t t t

t 1 t 1

ˆ ˆ ˆ( X ( ) ( ) X 

 

             (3.5.17) 

Since    is a positive definite matrix, 
1  is also positive definite  

Thus, we define the (nx1) vector *

tx  as  

  * 1

t t
ˆX ( ) X   

The last tem in (3.517) takes the form  

  
T

1 1 1

t t

t 1

ˆ ˆX ( ) ( ) X



   
1T

* 1 *

t t

t 1

X X



     (3.5.18) 
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This is positive for any sequence *

tX    other than *

tX = 0 for all t. 

The smallest value that (3.4.17) can take achieved when *

tx =0 or when ˆ   .  

Since (3.5.17) is maximized by setting ˆ   , it follows that (3.4.10) is maximized 

by setting ˆ   .  Hence OLS regressions provide the maximum likelihood 

estimates of the coefficients of a vector autoregression. 

3.6. BAYESIAN VAR MODEL BVAR (p)    

3.6.1. Introduction  

Bayesian Vectors  Autoregression (VAR) is an econometric model.  It is the 

Bayesian version of simple vector autoregression (VAR) model. In Bayesian 

statistical inference, a prior probability distribution of an uncertain quantity p is the 

probability distribution that would express one’s uncertainty about p before the data 

is taken into account.  It is meant to attribute uncertainty rather than randomness to 

the uncertain quantity.  The unknown quantity may be a parameter. In Bayesian 

VAR, the coefficients are assumed to have a prior distribution.  This implies that 

after applying the data the coefficient will get prior distribution. This model provides 

a convenient frame work for incorporating prior information with as much weight as 

the analyst feels it merits.     

 Consider the VAR (p) model  

  t 1 t 1 p t p tY Y ...... Y             (3.6.1) 

 or  kY (X I )        (3.6.2) 

When the parameter vector   has a prior multivariate normal distribution with 

known mean *  and covariance matrix v , the prior density can be written as 

  

2k p/ 2
1/ 2 * 1 *1 1

f ( ) v exp ( ) v ( )
2 2

 

 

   
          

 (3.6.3) 

 

 The likelihood function for the Gaussian process becomes  
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KT 2
1 2

1 1

T k T k

1 1
l( / Y) I exp (Y (X I ) ) (I ) (Y (X I )

2 2


   

                
          (3.6.4) 

 The posterior density is  

   
1 11

f ( / Y) exp
2





 
     

 
 

Where the Posterior mean is  

1
1 1 1 1 * 1 1V (X X ) V (X )Y


   

 
              

The posterior covariance matrix is  

1
1 1 1V (X X )


 

 
       

In practice, the prior mean 
*  and the prior variance V  need to be specified. If all 

parameters are considered to Shrink toward zero, the null prior mean should be 

specified  

 The prior variance can be given by  

ij(l)   
 

2

2

ii jj

( / l) if i j

/ l if i j

 

  
    (3.6.5) 

Here ij(l)  is the prior variance of the 
th

ji(e )  element of l ,   is the prior standard 

deviation of diagonal elements of l ,   is a constant in the interval (0,1), and 
2

ii  is 

the ith diagonal element of   . The deterministic terms have diffused prior variance. 

In practice, we replace 
2

ii  by the diagonal element of the ML estimator of   in the 

non-constrained model.  

For  a bivariate BAR (2) model, 

1t 1,11 1, t 1 1,12 2, t 1 2,11 1, t 2 2,12 2, t 2 1ty 0 y y y y          (3.6.6)

 2t 1, 21 1, t 1 1, 22 2, t 1 2, 21 1, t 2 2, 22 2, t 2 1ty 0 y y y y          (3.6.7) 
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With prior covariance matrix  

 1 2 2 2 2 2 2 2 2

, , 1 2 1 1 2 1 2 1 1 2 1V Diag ( / ) , , ( / 2 ) , ( / ) , ( / 2 ) ( / 2)               

          (3.6.8) 

3.6.2. Forecasting of Bayesian VAR Modelling  

The bootstrap procedure is used to estimate standard error of the forecast. 

Simulation are performed and in each simulation the following steps are taken.  

1. The procedure generates the available number of observations, T, and 

uniform random integers It, where t=1,…. T.  

2. A new observation, ty , is obtained as a sum of the forecast based on the 

estimates coefficients plus the vector of residuals from the It;  

p

t j t j

j 1
tI

ˆ ˆy Y 



         (3.6.9) 

A new Basian VAR model is estimated by using the most recent observations, and a 

prediction value is made of the most recent observations.  

  
2B

i

t l/ t t

i 1

1
MSE (l) Y y

B




       (3.610) 

 Here 
R i

t t

i 1

1
Y Y

B 

   and B simulations and performed. 

3.7. VECTOR ERROR CORRECTION MODEL (VECM) 

3.7.1. Introduction  

When variables contain stochastic trends, they must be differenced to become 

stationary. When it is possible to estimate a VAR in levels when the variables follow 

stochastic trend, it is preferable to estimate the VAR in first differences, such as  

 
1 2 1 1

t 0 1 t 1 2 t 1 tY Y Y            (3.7.1) 
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2 1 2 2

t 0 2 t 1 t 1 tY Y Y            (3.7.2) 

By having the initial values of y1 and y2, we compute the levels by successively 

adding the changes to the initial values. Such a system contains interactions in the 

short run between the variables .The changes in y depends on the changes in x in the 

previous period and viceversa. This system implies that there is no long-run relation 

between y1and y2. The reason is that the two variables will be subject to different 

permanent effects of the shocks. Even though both shocks will affect both variables 

by virtue of that they affect each other, the permant effects need not be the same. If 

one variable changes permanently by 5 percent in response to a given shock and the 

other variable by 2 percent, they permanently a part by 3 percent over time the 

permanent effects of additional shocks will accumulated and the gap between the 

two variables will tend to increase.  

To insure that the two variables move together also in the long ran, the equations 

must be modified to include error-correction terms to make sure that the two 

variables are cointegrated. If there is only one cointegration relation, we would have.  

 
1 2 1 1 2 1

t 1 t 1 2 t 1 3 t 1 t 1 tY Y Y (Y Y )             (3.7.3) 

 
2 1 2 1 2 2

t 0 1 t 1 2 t 1 3 t 1 t 1 tY Y Y (Y Y )               (3.7.4) 

This is a Vector Errors Correction Model (VECM). The speed of adjustment 

depends on the strength of the two speed-of-adjustment coefficients 3 3( and )  . 

3.8. STATE SPACE MODELS 

The origin of statistical state space models can be traced to dynamical systems in 

engineering branches-communications, robotics, automatic control and aerospace 

systems such as space craft attitude control.  

If U(t), Y(t), X(t) represent input, output and state vectors respectively, general 

state-space equations are non-linear equations  
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   (t )Y G X(t), U(t), t      (3.8.1) 

   ( t )dX
F X(t), V(t), t

dt
      

 The corresponding special discrete-time linear case is  

  (t)Y A(t) X(t) B(t) U(t)      (3.8.2) 

  (t 1)X C(t) X(t) D(t) U(t)    

Here the state variables refer to memory variables.  

The statistical adoption of (3.8.1) and (3.8.2) are widely used discrete time 

regression like models made of two inter connected equations the observation 

equation and the system equation. These equations may assume various linear and 

non-linear forms and referred as state space models.  

3.8.1. Aspects of State Space Model  

Early work on linear state space models by R.E. Kalman and others appeared in the 

data 1950s.  The models owes their widespread use and popularity to NASA’s 

Apollo space program, designed to achieve preeminence in space for the United 

States including landing human on the moon and bringing them safely back to earth. 

In March 1960, Kalman published a seminar paper in which he developed the 

“Kalman Filter” that gives the recursion formulas for filtering and prediction using 

the linear state space model in discrete time, thus extending the Wiener-Kolmogorov 

theory of filtering and prediction for stationary time series set forth in the 1940s. In 

the full of that year Kalman presented his paper to scientists and engineers at the 

Ames Research Centre (ARC) of NASA. The audience, due to notation and 

conceptual problem, had greater difficult at first understanding Kalman’s work. But 

past that stage the value of the state space approach to non-linear navigation (State 

estimation) became apparent and a simulation study for validation of the method 
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took place. By early 1961 it was established that on-board optical measurements 

combined with the equation of motion could yield adequate estimates for navigation 

and guidance problems, the breakthrough that the NASA were hoping for. 

Subsequently an early Kalman filter application was made Circa (1961) during 

feasibility studies for the Apollo space program at the instrumentation labouratory of 

MIT. Since then the Kalman filter has been widely used in navigation and guidance 

systems and in many other control systems.  

The application of a Kalman filter is a simple matter, the problem is formulated in 

terms of equations (3.8.2) and then the standard Kalman filter algorithm can be 

applied in a straight forward manners. Casting the problem in the right form, 

especially when the models are non-linear is not an easy task. Most of the systems 

are not fully observable and thus there are various difficulties in the successful 

application of the algorithm. The continuous time analog of the linear state space 

model and the Kalman filter have been studied in 1961 in a paper by Kalman and 

Bucy. In that paper the authors combined and streamlined their ideas developed 

independently in previous works in the late 1950s. A similar line of work during 

roughly the same period was also pursued in the former USSR by Russian Physicist 

R.I. Stratonovich, who studied a recursive algorithm for non-linear, least squares 

estimates of non-linear dynamical systems  driven by white noise.  

State space models started to permeate the statistical literature in 1960s and 1970s. 

Through the work of individually interested in forecasting and in particular Bayesian 

forecasting of nonstationary processes-where the assumption of constant coefficients 

is quite generous. Another reason for the interest in state space models by 

statisticians is the fact that general state space modelling based on recursive relations 

of probability densities and their integrals are useful for non-Gaussian time series 

with abrupt discontinuities and/or outliers.  

3.8.2. Linear Gaussian State Space Models  

Let Y1, Y2, ….. be a sequence of observations or responses and X1, X2, …. The 
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corresponding covariance sequence. Let Ft represent the available information to the 

observer at time t.  

It is convenient to adopt the convention that 

    0 t t t 1 t t 1 tF 0, F Y , ...., Y , Y F , Y      

The dependence on the covariates  1 tx , ...., x is kept in the background in the 

sense that the results are interpreted as conditional on the covariates.  

We have,  

Observation equation 

 
1

t t t t t tY z , N(0, V )~         (3.8.3) 

System equation  

 t t t 1 t t p tF w w N (0, w )~        (3.8.4) 

Initial formation  

 0 0 0 0N ,(b , w )~        (3.8.5) 

Here zt is a design vector of covariates such as past observations, supposed known at 

time t.  We first take Ft, Vt, Wt as known. 

We assume that {vt} and {wt} each consist of independent random variables and that 

0 , {vt}, {wt} are mutually independent. The state t , a vector of dimension p is 

time dependent, random and satisfies the autoregression equations (3.8.4) by means 

of the time dependent transition matrix Ft.  

The joint distributions of the observations and the states space are determined by the 

distributions of the initial state  0  and of the error sequences    t t, w . The 
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system of equations (3.8.3) (3.8.4) and (3.8.5) is a regression model called linear 

state space model or dynamic linear model. The state space system (3.8.3)-(3.8.5) is 

used in three types of estimation problems at time t referred to as prediction or 

forecasting, filtering, and smoothing. Prediction for t>N, filtering t=N and 

smoothing for t<N. The estimation of the state 
t  or its conditional distribution 

 t Nf / F  is called prediction if t>N, filtering if t=N and smoothing when t<N.  

3.8.3. State Space Representation for AR(p) 

Let Xt be an autoregressive process of order p, not necessarily stationary  

 t 1 t 1 p t p tX X ...... X           (3.8.6) 

 The equation can be expressed in matrix form to give the state equation.  

t p 1 t p

t

t 1 t 2

1

p p 1 1 tt t 1

x x0 1 0

0x x

x x

0 0

0

.. .
. . .

. . . . . .

. . . . . . .. .

. . . . . . .. .
. . . .
. . .

  

 

 

      
      
      
      
         
      
      
      

             

  (3.8.7) 

 

or   t t 1 tF w          (3.8.8) 

  and t ty (0,0,...., 0,1)   

 

3.8.4. State Space Representation of ARMA (p,q)  

 Consider the polynomials in the backward shift operator B,  

  t t 1Bx X         (3.8.9) 
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p

1 p(B) 1 B ....... B         (3.8.10) 

  
q

1 q(B) 1 B ......... B         (3.8.11) 

  

         \Where (B) has its roots outside the unit circle, the stationary condition.  

A state equation for 
t t(B)X v  using matrices and an observation equation 

t tY (B)X  , is  

  t tY (B)X   

         =
1

t(B) (B)        (3.8.12) 

                    and t t(B)y (B)    is ARMA (p, q).  

The role of the state component Xt is implicit in the ARMA representation but 

explicit in the state space representation.  

 

 The observation equation is  

  
t tY (B)X     

   r 1 0 t,......., X    

 

 and the state equation is obtained by expressing  

 
t t(B)X v   as  
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 t t 1

1
t1 2 1

0 1 0

x x

00 0 0

0

0 0 01

1

.
. .
. .

. . . . . . .

. . . . . . .
. .
. .



  

   
   
   
   
    
   
   
   

          



   (3.8.13) 

 

3.8.5. Estimation by Kalman Filtering and Smoothing  

 Consider the state space system (3.8.3)-(3.8.5) for t=1, ….,N 

and Let
t

t s sE F            (3.8.14) 

    
1

t s t t s t t sP E      
  

     (3.8.15) 

be the conditional mean and its precision matrix. The covariance matrix between 

t t s    and y1, …..ysis zero for all t and s. Therefore by the normal assumption 

t t s   is also independent of y1, y2, ……., ys for all t and s which implies that 
t/sP is 

also the conditional covariance matrix of t s .  

Let 
0/0 0 0/0 0b , P w    and assume the initial condition 

 0 0 p 0/0 0/0F N ,P  .  

Then,  

 Kalman Prediction  

  t t 1 t t 1 t 1F P          (3.8.16) 

  
1

t t 1 t t 1 t 1 t tP F P F w      

Kalman Filtering  
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   1

t t t t 1 t t t t t 1k y z            

  
1

t t t t t t 1P I k z p 
          (3.8.17) 

Where Kalman Gain kt is given by  

  
1

1

t t t 1 t t t t 1 t tK P z z P z


 
         (3.8.18) 

Proof: 

The prediction equations (3.8.18) follow from (3.7.4) 

  t t 1 t t 1 t t 1 t t 1 t t 1 t 1E F E F w F F     
                

and     
1

t t 1 t t t 1 t t t 1P E P  
     
  

 

       
1

t t 1 t 1 t 1 t t t 1 t 1 t 1 tE F w F w     

       
  

 

  
1

t t 1 t 1 t tF P F w    

To obtain (3.8.17) consider, the initial condition 0 0 p 0 0 0 0F N ( , P )~   and write 

 
t 1

p t 1 t 1 t 1 t 1t 1 F
N , P~


   

   

Then  
t 1

t t 1 t t 1 p t t 1 t t 1t F
= F +w F N , P~


       

from which  1 1

t t 1 t t t 1 t t t 1 t ty F N z z P z v~     

and  t t t 1 t t 1 tCov , y F P z    

Hence 
t t 1 t t 1 t t 1 tt

t 1 p 1 1 1 1

t t t t 1 t t t 1 t t t 1 t t

P P z
F N ,

y z z P z P z v
~   

 

  

     
                  
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From the conditional multivariate normal distribution and after some algebra,  

  1 1

t t t 1 t t 1 t t t t t 1 t t t t 1y , F k y z , (I k z ) P~            

 

 Where kt is given in (3.8.17) 

In the above proof we used the important fact that if the p-vector  
1

1 1

1 2x ,x  has a 

multivariate normal distribution with corresponding means  
1

1 1

1 2,   and covariance 

matrix portioned compatibly, ij( ), i, j 1,2    . 

 
1 1 11 12

p

2 2 21 22

x
N , ,

x
~

        
                    

  

tx  has a multivariate normal distribution with mean   and covariance matrix  

ii , i i 1,2    and the conditional distribution of X2 given x, is again multivariate 

normal with mean  

   1

2 1 2 21 11 1 1E x x (x )          (3.8.19) 

and covariance matrix  

 
1

2 1 22 21 11 12Cov x x              (3.8.20) 

3.8.6. Kalman Smoothing  

The smoothes for obtaining t 1 N  and its covariance matrix t 1 NP  , for t=N, N-

1,….,1, under normality and the initial filtering conditions N N N N, p  is given by 

the following recursions.  

  t 1 N t 1 t 1 t t N t t 1             

   1

t 1 N t 1 t 1 t t N t t 1 tP P P P           (3.8.21) 
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1 1

t t 1 t 1 t t t 1P F P

     

Smoothing at t=N and going backward in time, the smoothing estimate t 1 N  is 

obtained by adjutancy the filtering estimate t 1 t 1  adding to it a weighted 

difference between a smoothing estimate t N  and a prediction estimate t t 1 .  

Proof: The proof of the smoothing recursions is more complicated than that of the 

Kalman filtering recurring of  the several possible links of attacks, we follow that of 

maximum likelihood.  

We maximize the conditional Gaussian density  

   t 1 t Nf , F , t N        (3.8.22) 

 With respect to t 1 t,   

The values of  t 1 t,   that maximize (3.8.22) are the respective conditional means 

t 1 N t N,  . From (3.8.3) and (3.8.4) 

    t 1 t N t 1 t 1 t Nf , F f , F , Y , ......, Y          (3.8.23) 

 
t 1 t 1 t t 1 t N t 1 t t 1f (F )f ( F ) f (Y ......Y , , F )          

   
t 1 t 1 t 1 t t 1 t N tf (F )f ( F ) f ( ) f (Y ,......Y )         

Where  t 1 t 1f F   is the density of  p t 1 t 1 t 1 t 1N , p     and  t t 1f    is the 

density of  p t t 1 tN F , w .  

Assume that t N  has already been obtained.  
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 Then t 1 N  is obtained by minimizing  t 1 t N N2log f , F    with 

respect to 
t 1 .  

 This is equivalent to minimizing  

        
1 1

1 1

t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t N t t 1 t t N t t 1P F w F

                     

By differentiating with respect to 
t 1 and  equating the derivative zeo, the 

solution is  

   
1

1 1 1 1 1 1 1

t 1 N t 1 t 1 t t t t 1 t 1 t 1 t 1 t t t NP F w F P F w


 

             

This can be simplified using the matrix relations.  

  
1

1 1 1 1 1 1P F w F P PF (FPF w) FP


       

  
1

1 1 1 1 1 1 1 1P F w F F w PF (FPF w)


       

 Where, P, F, wstand for t 1 t 1 t tP , F , w   respectively. 

This and the smoothing expression (3.8.16) give the desired smoother.  

    
1

1 1

t 1 N t 1 t 1 t 1 t 1 t t t 1 t 1 t t t N t t 1 t 1P F F p F w F


                 

   1 1

t 1 t 1 t 1 t 1 t t t 1 t N t t 1P F P

           

   t 1 t 1 t t N t t 1        

To obtain    
1

t 1 N t 1 t 1 N t 1 t 1 NP E ,    
     
 

 

note that t 1 t 1 N t 1 t 1 t 1 t t N t t 1( )              
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or by rearranging terms  

   t 1 t 1 N t t N t 1 t 1 t 1 t t t 1 t 1F                  (3.8.24) 

and the following crose terms vanish  

        
1 1

t 1 t 1 N t N t 1 t 1 t 1 t t t 1 t 1E E F 0                

and  

      1 1 1 1

t s t s t t t s t t 1 t 1 t t t sE E P F E F w P             

Thus from (3.8.24) 

  1 1

t 1 N t 1 t 1 t t N t t 1 t 1 t t tP P P F p F w          

which together with (3.8.16) completes the proof.  

3.8.7. Estimation in the Linear Gaussian Model 

Estimation of parameters in the linear Gaussian system can be done the method of 

maximum likelihood. Here we take a certain parameterization assumption which 

often occurs in practice.  

We assume that the parameters 0 0 t t tb , w , F , V , W  depend completes or in part on 

a vector   of hyperperameters which do not depend on ‘t’.  

 Here, we write  

 0 0 0 0 t t t t t tb b ( ), w w ( ), F F ( ), V V ( ), w w ( ),           

and base the inference on the joint distribution of the observations 
1 NY ,...., Y  or 

equivalently the likelihood of   . We assume that t t tF , V , W in the system (3.8.4)-
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(3.8.5) do not depend on t and estimate 
0 0(b , w , F, V, W)   by maximum 

likelihood. In either case the likelihood is obtained from the joint distribution of the 

one-step prediction error or innovations.  

 
1

t t t t 1 t t t t 1y E y F y z 
         

    =
1

t t t t 1 t 1y z F t 1,....., N     

 

Which are independent normal random variables with mean zero and variance  

  
2 1

t t t t 1 t t( ) z P z      

    1 1

t t t 1 t 1 t t t tz F P F w z        (3.8.25) 

The Gaussian assumption implies that 1 Nt , ......, t  is a one-to-one linear 

transformation of 
1 NY , ......,Y  so that upto a constant the log-likelihood of base   

on 
1 NY , ......,Y is given by 

 l
N N

2 2 2

y t t t

t 1 t 1

1 1
og L ( ) log ( ) ( )

2 2 

             (3.8.26) 

Maximising the likelihood with respect to   is the direct method.  

The indirect method is based on the joint distribution of both the observed time 

series and the unobserved states and uses the EM algorithm to maximize the 

resulting likelihood.  

 From (3.8.4)-(3.8.5) 

     
t t

t 1t t
f y , F , f y ; 

    

    
1

t t tf (y z )    
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and   t t 1 t 2 0f , , ....., ;        t t 1f ;     

  w t t t 1f F      

Where 
t f~   and 

t ww f~  

 The likelihood is  

  y, 0 1 N 1 NL ( ) f , , ....., , y , ....., y ,        

      
N

1

0 w t t t 1 t t t
t 1

f f F f y z 


            (3.8.27) 

3.8.8. Non-linear and Non-Gaussian State Space Model 

Predictions, filtering and smoothing can be done more generally by using the laws of 

conditional probability, Bayes theorem and relating linearity and the normal 

assumption. In the general approach the dynamics is captured directly through the 

conditional densities of the observations and states, without formation of any 

particulars system of equations. Assume that {Yt}, t=1,….., N denotes the observed 

process and let the unobserved state process be  t , t 0,....., N  .  

The general state space model is  

 General Observation equation   

  t t t tY yf~         (3.8.28) 

 General System equation   

  t t 1 t t 1f~            (3.8.29) 

 Initial Information  

    0 r 0 0F ff~         (3.8.30) 
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Here the understanding is that the responses are independent and that the sequence 

of unobserved states from a Markov process.  

The equation (3.8.28) means that given the state sequence  t , the observed 

process  tY forms an independent sequence of random variables and (3.8.29) and 

(3.8.30) mean that the sequence of unobserved states  t , t 0,...., N   is a Markov 

process with initial distribution 0f ( ) . When the unobserved states assume discrete 

values then the definition of the general state space model is equivalent to that of a 

hidden Markov Model. The densities in (3.8.28) and (3.8.29) may depend as 

unknown parameters referred to as hyper parameters.  

When the corresponding conditional densities are Gaussian, then the linear normal 

state space model (3.8.3), (3.8.4) and (3.8.5) is a special case of the system 

represented by (3.7.28), (3.7.29) and (3.7.30). It can be verified easily. Another 

special case is provided by the non-linear and non-Gaussian state space model.  

 t t t tY h , v        (3.8.31) 

  t t t 1 tf , w      

Where ht and ft are known and suitably defined functions and t , wt are random 

sequences, t=1 ….N. 

 An example  of (3.8.31) is  

  t t t tY h ( ) v         (3.8.32) 

t t t 1 th ( ) w     

Here, the main problem is estimation of current, future and past states and their 

distributions given the data that is, filtering prediction and smoothing respectively.     

 



 

Time Series Regression Models 

©Sahasra Publications 56 

CHAPTER - IV TESTS OF TIME SERIES REGRESSION MODELS 

4.1. TESTS FOR STATIONARITY 

4.1.1. Introduction  

The stationarity or non-stationarity of a series can strongly influence its behaviour 

and property. For example, persistence of shocks will be infinite for non-stationary 

series. Some times, if two variables are trending over time, a regression of one on 

the other could have a high R2 even if the two are totally unrelated. This is spurious 

regression. If the variables in the regression model are not stationary, then it can be 

proved that the standard assumptions for asymptotic analysis will not be valid. 

Hence, we need to test for stationarity.  

4.1.2. Unit Root Test 

The early and pioneering work on testing for a unit root in time series was done by 

Dickey and Fuller. The basic objective of the test is to test the null hypothesis that 

1in :   

  t tt 1 uy y         (4.1.1) 

Against the one-sided alternative 1  

Hence we have,  

  H0: Series contains a unit root  

 as  H1: Series is Stationary  

We usually use the regression   

  t tt 1y y u         (4.1.2) 

So that a test of  1   is equivalent to a test of 0 (since 1 )     

4.1.3. Dickey Fuller Test  

 Dickey Fuller tests are also known as   Test: t .,,     

The null and alternative models in each case are 

i)  t t0 t 1H : y y u          
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 tt1 t 1 u ,H : y y 1         (4.1.3) 

This is a test for random walk against a stationary autoregressive process of order 1. 

ii)        t t0 t 1H : y y u          

t t1 t 1H : y y , t 1         (4.1.4) 

 This is a test for random walk against a stationary AR(1) with drift.  

iii)       t t0 t 1H : y y u          

t t1 t 1H : y y t u , 1         (4.1.5) 

This is a test for random walk against a stationary AR(1) with drift and a time trend. 

 Computing Dickey and Fuller Test Statistic.  

 We write t ty u   

 Where  t t t 1y y y ,    and alternative is  

 tt t 1y y t     

With 0 in case (i)     

 0 in case (ii) and   

 1 in case (iii)    

In each case the tests are based on the t-ratio on yt-1 term in the estimated regression 

of   t t 1y on y , a constant in case (ii) and a constant and trend in case (iii).  

 The test statistics are defined as  

 Test Statistic = 

 
ˆ

ˆS.E




      (4.1.6) 

The test statistic does not  follow the usual t-distribution under the null, since the 

null is one nonstationary, but follows a non-standard distribution.  

Critical values for the Dickey Fuller Test  
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 Significance Level 1% 5% 10% 

C.V. for constant but not trend  -3.43 -2.86 -2.57 

C.V. for constant and trend  -3.96 -3.41 -3.12 
 

Critical values for DF and ADF Tests (Fuller, 1976, p.37).  

The null hypothesis of a unit root is rejected in favours of the stationary alternative 

in each case if the test statistic is more negative than critical value.  

4.1.4. Augmented Dickey Fuller Test  

Dickey Fuller Test and unit root tests are valid only if ut is white noise. In particular, 

ut will be autocorrelated if there was autocorrelation in the dependent variable of the 

regression  ty .  The solution is to augment the test using p lags of the dependent 

variable. The alternative model is  

 i

p

t t 1 t 1 t

i 1

y y y u 



            (4.1.7) 

The same critical values from the DF tables as used before. A problem now arises in 

determining the optimal number of lags of the dependent variable.  

There are two ways, (i) use the frequency of the data to decide, (ii) use information 

criteria.  

Testing for Higher orders of Integration 

Let us consider the simple regression  

 t tt 1y y u     

 We test 0 1H : 0 H : 0   

If H0 is rejected we conclude that yt does not contain unit root. If H0 is not rejected, 

the series contains a unit root. But if  ty I(2),  then what it. Hence we still not 

have rejected. We now need to test  

 t t0 1H : y I(2), as H : y I(t)  

 We will continue to test for a further unit root until.  

 We reject H0.  
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 We now regress 
2

t t 1y on y    and now we test  

 t0H : y I(1)  which is equivalent to t0H : y I(2) .  

So in this case, if we do not reject, we conclude that yt is at least I(2).  

Main Criticism of Dickey-Fuller Test is that the process of the test is low if the 

process is stationary but with a root close to non-stationary boundary. If the true data 

generated process is t tt 1y 0.95y u  , then the null hypothesis of a unit root 

should be rejected.  

4.1.5. Graphical Inspection (Correlogram)  

Correlogram is a graphic of autocorrelation values from several time intervals in 

time series data. It is also known as Auto Correlation Function (ACF). ACF 

represents comparison between covariant on lag k and its variant.  

  

   

 

T

t t k

t k 1
k T

2

t

t 1

y y y y

y y



 



 

 






    (4.1.8) 

 Here  k is ACF coefficient in lag k 

  T is the number of observations 

  ty  observation in t period 

  y  is the mean  

  t ky   is the observation in t-k period.  

ACF ( k ) has valve started from -1 to +1. If  ACF value on every lag is  , then the 

data is stationary. Usually, lag length needed to analyze is one third or a quarter of 

the number of observations of a time series data. Another way to determine whether 

a time series data is stationary or not, we use the following method.  

 k k

1
1.96 x S.E or 1.96

T
         (4.1.9) 
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Here SE is the standard errors and the significance level is 95% with sample number 

equal to T.  

If ACF coefficient value is in the interval with significance equal to 95%, then null 

hypothesis (H0) that shows k  equal to ‘0’ cannot be rejected. It means that the data 

is stationary.  

4.2. TEST FOR NON-STATIONARY REGRESSORS 

4.2.1. Introduction  

Cointegration is an econometric technique for testing the relationship between non-

stationary time series variables. If two or more series each have a unit root, but liner 

combination of them is stationary, then the series are said to be co-integrated.  

4.2.2. Johansen Cointegration Test 

The Johansen test is a procedure for testing of several I(1) time series. This test 

permits more than one co-integrating relationship. There are two types of Johanset 

test. They are either with trace or with eigen value and the inference will be 

different.  

The null hypothesis for the trace test is the number of co-integration vectors r n,  

the null hypothesis for the eigen value test is r = n.  

Like in a unit root test, there can be a constant term, a trend term, both or neither in 

the model. For a general VAR (p) model.  

 tt t p t p 1 t 1y D y . . . . . y e , t 1, . . . . , T             (4.2.1) 

There are two possible specifications for error corrections, that is two VECM.  

1. The long run VECM: 

t t t p tp 1 t p 1 1 t 1y D y y x ..... , t 1, ..., T                   

Where 1i i..... I, i 1, ...., p 1          

2. The transitory VECM: 

 t t tp 1 t p 1 1 t 1 t 1y D y ...... y y , t 1, ..., T                  
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Where  pi i 1 .... , i 1, ..... , p 1         

In both VECM,  

 p1 ..... I        

Inferences are drawn on  , and they will be the same.  

4.3. COINTEGRATION REGRESSION: DURBIN-WATSON TEST 

4.3.1. Introduction  

This test involves a simple regression of one variable on the other, and the standard 

Durbin-Watson test on the residuals. Here the null hypothesis is that the residuals 

from a non-stationary random walk, and the alternative hypothesis is that the 

residuals form a stationary AR(1) process. This the most powerful test in the face of 

a trend. Engle and Yoo have developed critical values for the cases when upto five 

variables are included in the equation. Engle and Glanger point out that most 

economic data are integrated of order one, I(1), and are not an independent 

stationary process. This test can be used to provide a first or preliminary judgement 

as to the present of cointegration.  

 The null and alternate hypotheses to be tested are: 

 H0: DW = 0 (Co-integration does not exist).       (4.3.1) 

 H1: DW ≠ 0 (Co-integration does exist).  

Estimate the co-integrating regression between the series x(t) (t) e(t)   .  

Now, estimate the Durbin-Watson Statistic for the cointegrating regression compare 

the Durbin-Watson Statistic to the critical values and conclusion will be taken.  

4.3.2. Tests of Model Order Selection 

Tests involving forecast error and prediction errors play a major role in 

identification of time series models. The selection of the number of lags to include in 

a multivariate time series model depends largely on the use of one or more 

minimization criteria. Some of the these criteria measure a model’s explanatory 

power over the sample period, some over the forecast period or a combination of 

both Kalyan (1988) gave a method which focuses on the method of exclusion of 
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variables. This relaxes the assumption of symmetry within the system and tests 

explicitly for the number of lags associated with each variable in the system. In the 

case of a symmetry in the system, Kalyan suggests alternative estimation 

procedures. All the above approaches are compatible with the Litterman (1986) 

Bayesian VAR procedures. There is no universal method for determining lag length. 

Hence, the fractioner must proceed with caution in using these criteria. Hence, for 

the sake of convention, multivariate extensions of the measure in UTM be 

considered. The principal difference between the univariate and multivariate cases 

dependent on the method of defining the error variance measure component of the 

equations.  

 The data be x, joint density f (x; , ).   

 Dimension  of  is p.  

 Here we test 0 0H :    

Likelihood ratio test: 

Maximise log likelihood  l( , )  twice. A twice we find unrestricted MLEs  ˆ ˆ,  

by maximizing l over all possibilities. Find restricted MLEs  0 0
ˆ,  by maximizing 

 0l ( , )  over .  

 Here the likelihood ratio statistic is   
 
 

 

 0 0

ˆ ˆf x, ,

ˆf x, ,
 

Usual test statistic is 2 times log likelihood ratio  

   
 

     0 0
ˆ ˆˆT 2 l ( , ) l ( , )     (4.3.2) 

Large sample theory 

 If H0 is true the  2
pT . 

 Compare AR (P0) and AR (P0+P) 

 Take   = 0 

 The model is  
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     
    

0 0
t t1 t 1 2 t 2 p p t p p

X a x a x ........ a x    (4.3.3) 

 Here take,  

   1 0(a ,....,ap , )  

     0 1 0 pap ,.......,ap  

   0 0,.......,0  

 The likelihood is  

     
 

0 0 0 0 0
X T 1 X p p 1 F1 0Xp p p p 1

f , ......,x f ,......, x f ,... x / x .....x  

Taking logs, we get  

        cMl ( , ) l ( , ) l ( , )  

 Here subscript ‘c’ indicates conditional and M for marginal.  

 Maximize only lc, then  

     
  

     c c c c c 0 0,c
ˆ ˆT 2 l , ˆ l , ˆ  

 Large sample theory still valid.  

 2
c pT  asymptotically if H0 true.  

Difficulties Asising 

Which two models to compare? What p and p0? Can compare only nested models. 

Must be careful to condition on same number of data points in fitting both models.  

4.3.3. Final Prediction Error  

Choose model order to minimize final prediction error: 

   
 

 
 

2

K,tT K

T K T
 

Here K is the number of parameters, subscript K on  means residuals from that 

model.  
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Akaike’s Information Criterion  

Minimize Akaike’s Information Criterion  

    2

K,tAIC log / T 2K / T      (4.3.4) 

      2 2

K,Tlog (FPE) log / T log (1 2K / T) 0(T )  

 
   2AIC 2K / T 0(T )  

Compare many models with different numbers k of parameters by computing. 

   2

K kAIC log ˆ 2k / T  

 or    2

K kAIC T log ˆ 2k  

Latter is equivalent to -2 times log likelihood + 2k 

In time series, we must make sure to use same data points compute  

 


 



2
2 t
p wˆ

data point s
      (4.3.5) 

Problems  

1. Plot AICp against p for p=0,1,…P. How to select p the largest order tied.  

2. The method is not consistent.  

       
0 0

0 0p p
ˆ ˆP p p 0 but P p p 0  

The final prediction error was originally proposed for AR (P) order determination 

and was extended to ARMA (p, q) models. This criterion was established on the 

basis of minimizing the one-step a head mean square forecast error after 

incorporating the inflating effects and estimated coefficients. The criterion to be 

minimized is  

 
 

 
 

2 n p q
FPE ˆ

n p q
      (4.3.6) 

 Where  2ˆ  is estimated variance of white noise  

  n is number of observation 
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  p is order of the autoregressive component  

  q is the moving average component.  

In 1970, Akaike found that FPE is asymptotically  inconsistent and in 1973 he 

employed information theoretic considerations to develop the Akaike’s information 

criterion, AIC. This was designed to be an asymptotically unbiased estimate of the 

Kullback-Leibler index of the fitted model relative to the true model. The AIC 

statistics is defined as  

 AIC= -2 In likelihood       2ˆ ˆ, , ˆ 2(p q 1)    (4.3.7) 

 Where ̂  are estimated autoregressive parameters,  

   are estimated moving average parameter, and  

2ˆ ,n,p and q  are as defined in (4.3.3).  

A criterion like AIC that penalizes the likelihood for the number of parameters in the 

model attempt to choose the most parsimonous model Shibata (1976) showed 

empirical evidence that AIC has the tendency to pick models which are over-

parameterized. In view of this, Akaike applied a Bayesian modification to AIC and 

came up with consistent order selection criterion, known as Bayesian information 

criterion or BIC. If the data   1 nx , ...., x  are observations of an ARMA (p, q) 

process, then a Bayesian information criterion is  

  

 
  

       
   

  


n

2 2

2 i

i 1
n n n

x n ˆ
n ˆ

BIC n p q I n (1 I 2n) (p q) I
n p q p q

 (4.3.8) 

BIC is more satisfactory than the AIC as an ARMA model selection criterion since 

the AIC has a tendency to the pick models, which are over-parameterized.  

Schwarz (1978) used a Bayesian analysis and Rissanen (1978) applied an optimal 

data recording scheme to independently arrive at the same criterion. This criterion 

later known as Schwarz-Risannen Criterion, SIC. The criterion to be minimized is 

given by  
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 

    
 

2

n n

p q
SIC I ˆ I n

n
    (4.3.9) 

Gemeke and Meose (1981) suggested approximating SIC by Bayesian estimation 

criterion, BEC,  

      
 

2 2

x x x n

x x

n
BEC ˆ p q ˆ I

n p q
    (4.3.10) 

Where x denotes a quantity from pre-assigned high order ARMA model that 

includes all potential models.  

Hannan and Quinn (1979) constructed Hannan-Quinn criterion from the law of 

iterated logarithm. It provides a penality functions, which decreases as fast as 

possible for a strongly consistent estimator as sample size increases. Hannan-Quinn 

criterion is given by  

    2 ln (ln n)
HQ ln ˆ 2(p q)

n
     (4.3.11) 

In 1989, Hurnish and Tsai found that BIC, which was modified from AIC, is not 

asymptotically efficient. Hence they suggested a biased corrected version of AIC, 

known as Akaikes information corrected criterion of AICC. AICC statistic is given 

by  

AICC =             2ˆ ˆ2 ln , , ˆ 2 ( ) ( ( ) 2likelihood n p q l n p q  (4.3.12.) 

 Where ̂  are estimated autoregressive parameters  

  ̂  are estimated moving average parameters 

  2ˆ  is estimated variance of white noise 

   n is no. of observations  

   p is order of the autoregressive component  

   q is order of the moving and age component  

      and likelihood    ˆ ˆ, , ˆ is the likelihood of the data under the    
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      Gaussian ARMA model with parameters    2ˆ, , ˆ .  

The penaly factors 2n (p+q+1)/[n-(p+q)-2] and 2 (p+q+1), for AICC statistic and 

AIC statistic respectively are asymptotically equivalent as n . AICC is 

asymptotically efficient for autoregressive process. The AICC statistic has a more 

extreme penalty for large order models, which counteract the over fitting nature of 

the AIC. Today, the AICC statistics, as its earlies version (AIC), has has been 

widely used as one of the order selection criteria in ARMA time series as well as 

log-length selection criteria in econometric modeling process.  

4.4. TESTS FOR CAUSALITY  

4.4.1. Introduction  

Concept of causality is closely related to the testing for the exogeneity of a variable. 

This concept is due to Granger (1969). Causality between two or more variables is 

one of the most important issues that econometricians address in their research. The 

term causality explains, that having knowledge of fast values of a variable x(t) does 

improve the ability of the model to predict another variable y(t). This relationship 

can be written as x(t) y(t). Instantaneous causality can also be specified where, 

not only past, but also present values of x(t) improve the ability of the model to 

predict y(t). Similarly the causality from y(t) to x(t) can  be explained. Feedback 

occurs in the case where x(t) causes y(t) and y(t) causes x(t) Pierce and Heaugh 

(1977) demonstrate instantaneous causality under the conditions that x(t) causes y(t) 

instantaneously, if and only if y(t) causes x(t) instantaneously.  

There are three possible explanations for apparent instantaneous causality: 

i) There is true instantaneous causality in the system so that elements in the 

system react without any measurable time delay to change in some other 

elements.  

ii) There is no true instantaneous causality, but the finite time delay between 

cause and effect is small, compared  to the time interval over which data is 

collected.  

iii) There is a jointly causal variable w(t-1) that causes both x(t) and y(t). 

Consequently, the researcher may wish to determine if a casual relationship 
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exists between x(t) and y(t), if there is reverse causality, if there is 

instantaneous causality and if feedback occurs between the variables.  

Various tests for causality have been developed. Most tests include the Granger test 

for causality and also a test for causality in the presence of “leads”. Such tests have 

been developed by Sims, Geweke-Meese-Dext, Pierce-Haugh and Gewek. For all 

these tests it is required that the series being tested are mean-zero stationary series.  

4.4.2. Granges Causality Test  

This test reflects the extent to which the lag process in one variable explaining the 

current values of another variable. Here, we test the null hypothesis that x(t) does 

not Granger-Cause y(t).  

 




    1 1i
i 1

v (t)y(t) y(t i) C      (4.4.1)  

 

 

 

        i j 2 2
i 1 j 1

y(t) y(t i) x(t j) c v (t)    (4.4.2)  

 We test whether j 0   for all lags j.  

An F test would be employed where (1) is the restricted equation  and (2) is the 

unrestricted equation. If the null hypothesis is accepted it indicates that lagged 

values of x(t) do not significantly explain the variation in y(t), that is, x(t) does not 

Granger-Cause y(t).  

A similar test would be conducted to examine whether y(t) does not Granger-Cause 

x(t). The relevant equations are:  

 i 1 1x(t) x(t i) c u (t)          (4.4.3) 

 i j 2 2x(t) x(t i) y(t j) c u (t)           (4.4.4) 

We test whether j 0   for all j. Here (4.4.3) is the restricted equation and (4.4.4) is 

the unrestricted equation in the F-test.  

The Ganger test can also be used to test for instantaneous causality between 

variables, although it should be a more that this concept has lesser usefulness. Here, 

we wish to examine whether the zero-lag of a given variable is significant in 
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explaining the variation of a second variable. To test the null hypothesis that x(t) 

does not Granger-Cause y(t) instantaneously, we use the following: 

 
 

 

       i j 1

i 1 j 1

y(t) y(t i) x(t j) v (t)     (4.4.5) 

 
 

 

        i j 2 2

i 1 j 0

y(t) y(t i) x(t j) C v (t)    (4.4.6) 

The only difference between these two equations is the definition of j. For the F test, 

equation (4.4.5) would be the restricted equation and (4.4.6) is the unrestricted 

equation. Similarly, to test if y(t) does Granger-Cause x(t) instantaneously, we use 

the following equations. 

 
 

 

        i i 1 1

i 1 j 1

x(t) x(t i) y(t j) C u (t)    (4.4.7) 

 
 

 

        i j 2 2

i 1 j 0

x(t) x(t i) y(t j) C u (t)    (4.4.8) 

Here (4.4.7) is the restricted equation and (4.4.8) is the unrestricted equation for the 

F test. If the null hypothesis of no causality is rejected  in both the tests, this 

indicates that a “feed back effect” exists between x(t) and y(t). This result is obvious 

because if x(t) instantaneously causes y(t) then y(t) must also instantaneously cause 

x(t). Hence rejecting the null hypothesis establishes the presence of causality. It 

should be stated at this point that feedback among one of the equations still implies a 

weak form of causality. This results from our inability to separate, whether the 

causality in one direction influences causality in the opposite direction. If one finds 

that causality does exist, then the sign as well as the magnitude of the effect of an 

independent on a dependent variable can be estimated by summing the coefficients 

in the unrestricted equation on all lags of the independent  variable, that is, j . The 

sign and significance of any particular lag of an independent variable are determined 

from the t statistic on the coefficient for lag j in the unrestricted equations.  

An issue that assess in causality testing is the choice of i and j in the test equations. 

In many empirical applications, i and j are set equal to each other, that is, the same 

number of lags of x(t) and y(t) are used in models.  
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Test Procedure 

The null hypothesis to be tested.  

For Causality Test  

 H0 : x(t) does not Granger-Cause y(t) 

 H1 : x(t) does Granger-Cause y(t) 

 H0 : y(t) does not Granger-Cause x(t) 

 H1 : y(t) does Granger-Cause x(t) 

For Instantaneous Causality Test  

 H0 : y(t) does not Granger-Cause x(t) instantaneously  

 H1 : y(t) does Granger-Cause x(t) instantaneously  

Assure that the data series are stationary. Choose the number of lags to be used in 

the equations.  

Causality Test  

 For x(t) y(t) : Equations (4.4.1) and (4.4.2) 

 For y(t) x(t) : Equations (4.4.3) and (4.4.4) 

Instantaneous Causality Test  

 For x(t) y(t) : Equations (4.4.5) and (4.4.6) 

 For y(t) x(t) : Equations (4.4.7) and (4.4.8) 

Calculate the test statistic. The formula remains same for the general causality and 

the instantaneous causality tests.  

 
 R UR

UR

ESS ESS / q
F

ESS (n k)





      (4.4.9) 

Here ESSR and ESSUR are the error sum of squares for the restricted and unrestricted 

equations respectively; q is the number of restrictions applied, n is the total number 

at observations; and k is the total number of parameters in the unrestricted model 

(including constant). The statistic is distributed as an F with q degrees of freedom in 

the numerator and n-k degrees of freedom in the denominator is Fq,n-k. We accept the 



 

Time Series Regression Models 

©Sahasra Publications 71 

alternative hypothesis when the calculated F statistic is greater than the critical 

value.  

4.5. SIMS TEST 

4.5.1. Introduction  

Sims (1972) explained that a necessary condition for y(t) not to Granger Cause x(t) 

is for future x(t) terms to have zero coefficients in a regression of y(t) an future, 

current, and lagged values of x(t). As an extension of the Granges causality test, the 

Sims test includes future values of the independent variable in the unrestricted 

equation. This test is an attempt to measure unidirectional causality. This would 

imply that although y(t)x(t), the relationship would be passive in the sense that 

x(t) would not further influence y(t). Sims begins by transforming the natural 

logarithms of the series x(t) and y(t) according to the filter.  

     *x(t) x(t) 1.5 x(t 1) 0.562 x(t 2)     (4.5.1) 

This process is purported to flatten the spectral density of many time series and to 

increase the likelihood that the regression residuals are white noise. To test the null 

hypothesis that x(t) does not cause y(t), the following equations would be estimated.  

 




    j 1 1

j 0

* *x(t) y(t j) v (t)C      (4.5.2) 

 




    j 2 2

j

* *x(t) y(t j) v (t)C      (4.5.3) 

Here (4.5.2) would be the restricted equation and (4.5.3) would be the unrestricted 

equation for F test on the future values of y(t)*. To test the null hypothesis that y(t) 

does not cause x(t), the relevant equations would be:  

 j 1 1

j 0

* *y(t) x(t j) u (t)C




          (4.5.4) 

 




    j 2 2

j

* *y(t) x(t j) u (t)C      (4.5.5) 
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Here (4.5.4) would be the restricted equation and (4.5.5) is the unrestricted equation. 

In either case, one tests whether j 0   for all j<0, that is, all future values of the 

independent variable. Both Granger and Sims test the same null hypothesis. Hence 

the same F test can be employed.  

4.5.2. Test Procedure  

The null hypothesis to be tested is to be specified  

  H0 : x(t) does not Granger-Cause y(t) 

  H1 : x(t) does Granger-Cause y(t) 

  H0 : y(t) does not Granger-Cause y(t) 

  H1 : y(t) does Granger-Cause x(t) 

Apply Sims Filter procedure to the variables by converting them to natural 

logarithms and using filter (4.5.1). Assume that the data are stationary. Choose the 

number of lags and leads to be used in models. Estimate the restricted and 

unrestricted models.  

For x(t) y(t) : Equations (4.5.2) and (4.5.3) 

 For y(t) x(t) : Equations (4.5.4) and (4.5.5) 

Calculate the test statistic where the values are defined as above.  

 
 R UR

UR

ESS ESS / q
F

ESS (n k)





      (4.5.6) 

Accept the alternative hypothesis when the calculated F statistic is greater than F 

critical value. Here the placements of x(t) and y(t) in the equations is opposite that 

for the Granger test.  

4.6. GEWEKE, MEESE-DENT TEST 

4.6.1. Introduction  

Geweke, Meese and Dent (1983) examined a number of forms of causality and 

found that the 
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Sims test may suffer difficulties because of its failure to correct for serially 

correlated residuals. They proposed a two-sided distributed lag model, then 

augmented it with lagged dependent variables to correct for serial correlation. It is 

required that the data be stationary. To test the null hypothesis that x(t) does not 

cause y(t), the following equations would be considered.  

 
 

 

        i j 1 1

i 1 j 0

x(t) x(t i) y(t j) C u (t)    (4.6.1) 

 
 

 

        i j 2 2

i 1 j

x(t) x(t i) y(t j) C u (t)    (4.6.2) 

Here (4.6.1) would be the restricted equations and (4.6.2) the unrestricted equations.  

Similarly, for the null hypothesis that y(t) does not cause x(t), the relevant equations 

would be 

 

 

 

         ji 1 1
i 1 j 0

y(t) y(t i) x(t j) C v (t)    (4.6.3) 

 
 

 

        i j 2 2

i 1 j

y(t) y(t i) x(t j) C v (t)    (4.6.4) 

Here, equation (4.6.3) is the restricted equation for the F test and (4.6.4) the 

unrestricted equation. Here one will test if j 0   for all j<0, that is, for all future 

values of the independent variable.  

4.6.2. Test Procedure  

 Specify the hypothesis to be tested.  

 H0 : x(t) does not Granger-Cause y(t) 

 H1 : x(t) does Granger-Cause y(t) 

 H0 : y(t) does not Granger-Cause x(t) 

 H1 : y(t) does Granger-Cause x(t) 

Assume that the data are stationary choose the numbers of lags and leads to be used 

in the equations. Estimate the restricted and unrestricted models. 
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 For x(t) y(t) : Equations (4.6.1) and (4.6.2) 

 For y(t) x(t) : Equations (4.6.3) and (4.6.4) 

 Calculate the test statistic  

  
 R UR

UR

ESS ESS / q
F

ESS (n k)





    (4.6.5)  

Accept the alternative hypothesis when the calculated F statistic is greater than the 

critical F value.  

4.7. PIERCE-HAUGH TEST 

4.7.1. Introduction   

The causal pattern between two variables can be expressed interms of the cross-

correlation functions. Define the cross correlation between a pair of series x(t) and 

y(t) as follows: 

             

1
22 2

uv
(k) E u(t k)v(t) E u (t) E v (t)    (4.7.1) 

Here u(t) and v(t)  are white noise processor of x(t) and y(t) respectively and k is 

the number of cross-correlations tested. In practice, we replace (4.7.1) with the 

sample cross-correlation function. 

        

1
2 2 2

uv
(k) u(t k)v(t) u (t) v (t)     (4.7.2) 

Here all terms are defined as above Pierce and Haugh (1977) transform this sample 

cross-correlation into the following statistic.  

  


 
M

2
u

K N

U T (k)      (4.7.3) 

Here T is the number of observations and K is the lag length chosen for the test. 

Under the null hypothesis that x(t) does not cause y(t), one estimates (4.7.3) for K=1 

to M. The null hypothesis is rejected if U is greater than the selected critical value 

from Chi-Square distribution with N+M+1 degrees of freedom. The null hypothesis 

that y(t) does not cause x(t) utilizes the U statistic for the values of K=-1 to –M.  
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4.7.2. Test Procedure  

Specify the hypothesis to be tested.  

 H0 : x(t) does not cause y(t) 

 H1 : x(t) does cause y(t) 

 H0 : y(t) does not cause x(t) 

 H1 : y(t) does not cause x(t) 

Filter the series to be white noise. This can be done by obtaining the residuals for the 

series regressed on lags of the itself. Calculate the cross-correlations between the 

resulting residuals using equations (4.7.2). Calculate the test statistic, U using 

equations (4.7.3) for the chosen length K.  

Accept the alternative hypothesis of the causality when the test statistic U is greater 

than  2
(N M 1) . 

4.8. GEWEKE TEST  

4.8.1. Introduction  

Geweke (1982, 1984) further developed tests of causality to examine more explicitly 

the issue of reversals in linear and instantaneous linear causality and dependence 

between two variables. These tests attempt to decompose causality by frequency. 

For all three cases it is assumed that the series are stationary.  

Linear Feedback  

Geweke’s measure of linear feedback for y(t) to x(t) and x(t) to y(t) are respectively.  

     y x 1 2InF       (4.8.1) 

   x y 1 2ln T TF        (4.8.2) 

where 1 21 2, ,T , T   are the residual variance-covariance matrices from equations 

(4.8.1) and (4.8.2) respectively. Because x(t) and y(t) are one-dimensional univariate 

processes, the variance-covariance matrices are scalars. If the variances in the 
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restricted and unrestricted equations are the same, then  ln (1) will equal 0 and the 

statement y(t) does not  cause x(t) is equivalent to y x 0F    and vice versa.  

Instantaneous Linear Feedback  

A measure of instantaneous linear feedback can be derived similarly as: 

   x,y n 2 3l EF        (4.8.3) 

  y,x n 2 3l T TF        (4.8.4) 

 Such that  x,y y,y 22F F and T  are defined as above. E3 and T3 are the 

residual variance-Covariance matrices from equations (4.4.8) and (4.4.6) of 

Granger-Causality test respectively.  

Linear Dependence  

A third concept, closely related to the idea of linear feedback, is linear dependence. 

Geweke’s measure of dependence between x(t) and y(t) can be simply derived as the 

sum of the three types of linear feedback presented earlier.  

 x,y y x x y x,yF F F F          (4.8.5) 

That is, the level of linear dependence between x(t) and y(t) is the sum of the level 

of linear feedback from x(t) to y(t) and y(t) to x(t) and the level of instantaneous 

linear feedback between the two series. 

4.8.2. Test Procedure  

Consider the test procedure for each of the above. In all cases it is implicit that the 

series being tested are stationary. All test statistics are likelihood ratio tests that are 

distributed chi-squared.  

4.8.3. Linear Feedback  

Specify the hypothesis to be tested.  

 Feedback from x(t) to y(t).  

 0 x y: F 0H   [ No linear feedback from x(t) to y(t) ] 
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 1 x y: F 0H   [ Linear feedback from x(t) to y(t) ] 

4.8.4. Feedback from y(t) to x(t)  

 0 y x: F 0H    [ No linear feedback from y(t) to x(t) ] 

 1 y x: F 0H    [ Linear feedback from y(t) to x(t) ] 

Note that acceptance of the null hypothesis is the same as finding unidimentional 

causality in the sense of Granger and Sims.  

Estimate the relevant equations  

 For Feedback from x(t) to y(t) : Equations (4.8.1( and (4.8.2).  

 For Feedback from y(t) to x(t): Equations (4.8.3) and (4.8.4) 

 Calculate the relevant test statistic   

 For Feedback from x(t) to y(t)  

   2
x y (klp)nF  

 Here  n is the number of observations 

  k is the number of variables comprising the vector x(t) 

  l is the number of variables comprising the vector y(t) 

  p is the number of lags on the independent variable in  the 

  equation tested under null hypothesis 

The common case where x(t) and y(t) are univariate series, k=l=1. Compare the text 

statistic to the critical value of 2
with klp degrees of freedom for a given acceptable 

level of probability. The alternative hypothesis of linear feedback is accepted when 

the test statistic  2
(klp) . 

4.8.5. Instantaneous Linear Feedback  

Specify the hypotheses to be tested  

 0 x.yH :F 0  [ No instantaneous feedback between x(t) and y(t) ] 
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 1 x.yH :F 0  [Instantaneous feedback between x(t) and y(t) ] 

or  0 y.xH :F 0  [ No instantaneous feedback between x(t) and y(t) ] 

 1 y.xH :F 0  [Instantaneous feedback between x(t) and y(t) ] 

Testing only one of these pairs of hypotheses is necessary because Fx.y = Fy.x 

Estimate the relevant equations  

 for   Fx.y : Equations (4.4.4) and (4.4.8)  

  Fy..x : Equations (4.4.2) and (4.4.6) 

Calculate the test statistic. Compare the test statistic to the criticals 2
value with klp 

degrees of freedom for the acceptable level of probability. Accept the alternative 

hypothesis if instantaneous linear feedback when test statistic  2

(klp).  

4.8.6. Linear Dependence  

Specify the hypothesis to be tested.  

 0 x.yH :F 0  [ No Linear Dependence between x(t) and y(t) ] 

 1 x.yH :F 0  [ Linear Dependence between x(t) and y(t) ] 

Calculate the measure of linear dependence as specified in equation (4.8.5). 

Calculate the test statistic.  

  2
x,y (kl(2p 1)nF  

Where the values are defined as above. Compare the test statistic to the critical 
2

acceptance value with kl (2p+1) degrees of freedom for acceptance level of 

probability. Accept the alternative hypothesis of linear dependence when the test 

statistic   
 2

kl(2p 1)
.  

4.8.7. General Guidelines  

Several tests mentioned in this section, which test is the most desirable for testing 

the presence of causality? At this point there is no irrevocable evidence that can 

point to one test over the other. The Granger test seems to dominate the empirical 
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studies because of its case of implementation. Other tests, attempt to overcome some 

of the underlying testing problems. Judge et al (1985), suggest that testing based on 

present and past values of a variable does not include all possible relevant 

information. In addition, these are concerned with employing linear forecasts instead 

of nonlinear as well as using the mean square error criterion as a measure of forecast 

accuracy.  

4.9. TESTS FOR INDEPENDENCE  

4.9.1. Introduction  

Testing for independence can be divided into two categories. Category (1) refers to 

independence in each elements of the vectors x(t). Category (2) refers to 

independence among the variables in x(t). For the tests of independence of category, 

we can utilize the methods of VTM for testing the null hypothesis of independence. 

Testing for category (2) type of independence requires examining the correlation 

structure among series. This can be accomplished in a bivariate fashion as in Pierce 

and Haugh (1977) or in a multivariate fashion as in the Portmantea u-test of Hosking 

(1981). Examining Category (2) type of independence in the bivariate case is 

problematic, because it ignores the cross-covariance’s of the other variables. If these 

cross-covariance’s are negligible then are can ignore them, which is often the case in 

empirical work.  

4.9.2. Portmanteau-Test  

Chitturi (1974) and Hosking (1981) developed and refined a multivariate test of 

independence based on the univariate version of the Portmanteau Test. In order to 

test null hypothesis of independence the following test statistic is proposed  

    



    
k

1 1 1

i 0 i 0

i 1

Q T tr     (4.9.1) 

 Here T is the sample size  

          k is the number of lags  

                  tr is the trace operator  

 i is the ith covariance matrix of the variables in the jointly,  
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           stational vector x(t).  

Test Procedure  

Form the null hypothesis of independence for the vector x(t).  

H0 : x(t) is independent  

H1: x(t) is not independent  

for  a given number of lags k, calculate the test statistic Q.  

for a given significance level,  , obtain the critical value   from the chi-square 

distribution with m2k degrees of freedom. Reject H0 if Q   . 

4.9.3. Engle-Granger Test  

The Engle-Granger tests include two variations of a vector autoregressive (VAR) 

model. It is a restricted and unrestricted model tests. The restricted VAR test 

specifies the following two equations VAR (1) model.  

     1 1(t)y e(t 1) (t)   (4.9.2) 

       2 2(t)x e(t 1) y(t) (t)   

Here, 1(t)and 2(t)are white noise processes and e(t) are the residuals from the 

equation  

 x(t) a u(t) e(t)         (4.9.3) 

To perform the test, one estimates (4.9.2) and (4.9.3) and calculate the test statistic  

    2 2
1 1 2H t t           (4.9.4) 

Here, 1t( )  and 2t( )  are the t statistics for 1  and 2  respectively from equations 

(4.9.3).  

The null hypothesis is that co-integration does not exist. Critical values for the test 

can be found in Engle and Granger (1987). As an extension of the above test, an 

augmented restricted VAR test can be employed in the case where one includes upto 

p lags of the dependent variable in each equation of (4.9.3). The test statistic remains 

that of (4.9.4) and the null hypothesis is also the same.  
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The unrestricted VAR test is similar and specifies the following two equation VAR 

(1) model.  

         1 2 1 1y(t) y(t 1) x(t 1) C (t)   (4.9.5) 

           3 4 2 2x(t) y(t 1) x(t 1) y(t) C (t)   

Here C1 and C2 are constants and 1(t)and2(t)  are white noise processes. Under 

the null hypothesis of no co-integration, the test statistic is defined as  

  2 1 2H 2(F F )        (4.9.6) 

Here F1 and F2 and the F-statistics for the first and second equations in (4.9.5) 

respectively. Alternatively, one can alter (4.9.5) similarly to that of the restricted 

VAR case. The augmented unrestricted VAR is same as (4.9.5); except that p lags of 

the dependent variable are again included in each equation. The test statistic is same 

as in (4.9.6) and the critical values for both of these tests are provided in Engle and 

Granger (1987). The critical values for the restricted VAR, augmented VAR, 

unrestricted VAR, and the augmented unrestricted VAR depend on the assumption 

that the true model is VAR (1) with I(1) variables. If the true model is not the first 

order, then these tests should be discarded in favour of CRDW, DF and ADF tests. 

The simulation results of Engle and Granger (1987) and Engle and Yoo (1987) 

indicate that DF and ADF tests are quite powerful relative to the other tests.  

4.9.4. Test Procedure  

 Specify the hypotheses to be tested  

 Restricted VAR test  

 0 1H : H 0  (Cointegration does not exist)  

 1 1H : H 0  (Cointegration does exist) 

4.9.5. Unrestricted VAR test 

 0 2H : H 0  (Cointegration does not exist)  

 1 2H : H 0   (Cointegration does exist) 
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Estimate the cointegrating regression (4.9.3) and retain the residuals. Estiamte the 

relevant VAR test equations.  

Restricted VAR Test 

 Equation (4.9.2) 

 Unrestricted VAR Tests  

 Equation (4.9.4) 

 Calculate the relevant test statistic  

 Restricted VAR Test  

 H1 in equation (4.9.5) 

 Unrestricted VAR Test  

 H2 in equation (4.9.6)  

Compare the test statistic to the critical values in Engle and Granger (1987). We 

accept the alternative hypothesis of co-integration if the test statistic is greater than 

the critical values.  

4.10. TESTS FOR FORECAST ACCURACY  

4.10.1. Tests Evaluating Forecast Accuracy  

 Parametric Tests    Non-parametric Tests 

 Coefficient Tests     Single Point Criteria  

       (MAPE, MSE, RMSE) 

 Pseudo Forecasts    Interval Criteria  

 Sensitivity Analysis    Error Cost Analysis  

 Direction and Turning Point    Turning Point Analysis  

 Analysis      Sensitivity Analysis  

4.10.2. Comparative Accuracy Across Models  

 Parametric Tests  

 Granger-New Bold Tests  
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 Steckler Test  

In selecting a useful series of tests the goals suggested by Granger and NewBold 

(1986).  

1. How good in some sense is a forecasting model  or particular set forecasts? 

2. Is one forecasting model or a set of forecasts better than its competitors? 

Several possible tests that have been proposed to evaluate those goals have been 

summarized in (4.10.1). The tests relate to the accuracy of a single time series model 

or to comparative accuracy across models. The tests have also been classified as to 

whether they are parametric or non-parametric. Most of the tests presented so for to 

identify the various time series models have been parametric. They require same 

form of normal, t, F, or other statistical distribution to perform hypothesis tests. 

Such distribution methods can be applied here to obtain further information as to 

how a time series model might perform in the out-of-sample period. Non-parametric 

tests constitute a variety of tests whose application does not depend on hypothesis 

tests based on a known statistical distribution. These tests are performed 

primararely. In the out-of-sample period.   

4.11. ACCURACY OF INDIVIDUAL MODELS  

4.11.1. Parametric Tests  

Coefficient tests  

A traditional approach for evaluating forecast performance has been to determine the 

statistical properties of the regression coefficients in a give equation, where a 

particular functional form is assumed or given Direct tests of these coefficients often 

meet with difficulty in time series models and instead one must apply goodness-of-

fit tests, such as the coefficient of determination, the standard error of the estimate 

and the chi-square or F statistics.  

4.11.2. Pseudo Forecasts  

Normally one has available a set of t observations on each of the independent and 

dependent variables of a model, some of these data can be saved for comparison 

purposes. Model estimation can be based on the shortened original series and 
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forecast evaluation can be made by comparing the forecast values and the actual 

values of the saved series.  

4.11.3. Sensitivity Analysis  

It is also important to observe the sensitivity of equation solutions or forecasts to 

variations in the parameters of that equation. In the case of multivariate models, 

parameters of an independent variable can simply be varied systematically and 

variations in the solutions evaluated in terms of deviations from the base solution. F 

tests are often used to validate such response surfaces. In the case of the multivariate 

VAR models, such sensitivity analysis can also be performed by examining the 

responses in the impulse functions.  

4.12. DIRECTION AND TURNING POINT ANALYSIS  

4.12.1. Introduction 

The Henriksson-Merton (1983) test, which evaluates the ability of the time-series 

model to predict directional changes in the forecast variable, meets the first goal set 

by Granger and Newbold. Merton proposes that if a forecast has any value, it must 

cause a rational observer to modify prior beliefs about the distribution of subsequent 

movements in the variable being forecast. Because of the complexity of such a test, 

Cumby and Modest (1987) suggest the following simpler versions. Let i (t) 1   if 

the forecast change for a particular series is non-negative, otherwise i (t) 0  . 

Under the null hypothesis that the forecast has no value, Hensiksson and Merton 

showed that the following condition must hold  

                  i i i i(t) 0 / x (t) 0 (t) 1/ x (t) 0 1  (4.12.1) 

 Here  ix (t)  is the actual change in the ith variable of x(t).  

4.12.2. Test Procedure   

Let xi(t) be the actual value of the ith variable in the vector x(t), and ix̂ (t)  be the 

forecast value of xi(t).  

 Perform the following regressions: 
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     i 1 1 i 1x (t) z (t) (t)     (4.12.2) 

      i 2 2 i 2
ˆx (t) x (t) (t)       

 Here,    i i
ˆz (t) 1 if x (t) 0 and  

    i i
ˆz (t) 0 if x (t) 0 and  

     i i i
ˆ ˆ ˆx (t) x (t) x (t 1)  

Form the null and alternative hypothesis  

 H0: Forecast has no value, 1 20 or 0     

 H1: Forecast has value, 1 20 or 0     

From the it ( )  statistic for the parameter i  based on the regressions in (4.12.2). 

For a given significance level  , obtain the critical value   from the student t 

distribution. Reject H0 if the pt   .  

The Henriksson-Meston test also can provide information about the number of times 

each model correctly and incorrectly predicts both upward and downward 

directional changes in the variables of interest. For a series of N observed out-of-

sample forecasts for the variables, N1 is the number of observations with positive 

revisions, N2 is the number of observations with non-positive revisions, total 

revisions one N=N1+N2, n1 is the number of successful predictions given a positive 

revision, n2 is the number of unsuccessful predictions given a positive revisions, and 

a the total is n = n1+n2. One then tests to determine whether the observed number of 

successful predictions is unlikely under the null hypothesis of n forecasting ability. 

Let   represents the number of correct predictions. The null hypothesis of no 

forecasting ability is rejected when the probability of observing n1 or more correct 

signs is unacceptably small. For a given significance level   , the null hypothesis 

of no value in the forecasts is rejected when 1

*n   is the solution to 

 



    
       

    


1

T

n
1 1

v v

NN N
HM 1

nv n v
    (4.12.3) 
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 Here n1 is equal to the minimum of N1 and n.  

4.12.3. Test Procedure  

Obtain N out-of-sample forecasts for each variables. Define N1=the number of 

positive changes, N2= the number of negative changes and N=N1+N2.  

Count the number of successful predictions given positive changes n1 and the 

number of successful predictions given negative changes n2, where n=n1+n2. Let   

represent the number of correct predictions.  

Form the null and alternative hypothesis  

 H0: No forecast ability  

 H1: Some forecast ability  

 Choose 
*v  and form test statistics (3) where n1 = min (N, n).  

 For a given significance level , reject H0 if HM=1- .  

4.13. NON-PARAMETRIC TESTS  

4.13.1. Single Point Criteria  

The most popular tests that have been traditionally applied to measure the forecast 

errors between actual and forecast observations are single point criteria, such as the 

mean absolute percentage error, the mean squared error, and the root mean squared 

error.  

 

*
T

t 1

x(t) x (t)1
.100

T x(t)
MAPE




       (4.13.1) 

 
T

2
*

t 1

1
x(t) x (t)

T
MSE



         (4.13.2) 

 

1 2

* 21
x(t) x (t)

T
RMSE

 
    

 
      (4.13.3) 

Here x(t) = actual observation values and  

 x*(t)=Forecast or estimated values in the out-of-sample period, t=1, ..., T. 
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These tests can also be made in the context of the pseudo forecasts. Although the 

error criteria relate to period-by-period error, they can also be applied to analysis of 

multiperiod forecast analysis. 

4.13.2. Interval Criteria 

If one wants or interested in predicting an intervals or range of values, then a test of 

confidence intervals can be developed and applied for this purpose. 

4.13.3. Error Cost Analysis  

Although the above criteria are the most practical for evaluating performance with a 

historical sample or a small post-sample data set, they fail to define the surrounding 

probabilistic conditions in a way that would be useful with a large post-sample data 

set. There are two ways to improve this situations.  First, an informative forecast 

could accompany the point forecasts based on some mathematical statement 

regarding the probability distributions surrounding these forecasts. This amounts to 

an interval forecast in which the point forecast is none presented along with an 

appropriate confidence interval. Second, a decision forecast could be prepared that 

recommends that the forecast be accepted in relation to some alternative 

consequence. Granger and Newbold (1986) consider the case where the policy 

makes must decide on a certain policy that depends upon the future value x*(t) of a 

dependent variable x(t). The future value is not known and the policy maker could 

make in correct decision. The loss or consequence the policy maker must undergo an 

such a case is given by the loss function L [Di, x(t)], which describes the loss of 

selecting decision Di. When x(t) turns out to be the true value of x*(t).  

4.13.4. Turning Point Analysis  

A major characterization of a models performance is its ability to explain the turning 

points of fluctuations in values of a dependent variable. There are a number of 

descriptive variables or statistics that can be used to evaluate turning point errors. 

Most often this pertain to the number of turning points missed, the number of 

turning points falsely predicted, the number of under and over predictions, rank 

correlations of the predicted and actual changes and various tests of randomness in 

prediction. Naik and Leathold (1986) have suggested a method of evaluating turning 
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point performance based on the use of contingency tables. Henriksson and Merton 

(1983) also provide a parameter tests.  

4.14. COMPARATIVE ACCURACY ACROSS MODELS 

4.14.1. Introduction  

4.14.2. Granger-Newbold Test  

Consider the forecast errors generated from two different models  

 
*

1 1 1(t) x (t) x (t)e    from model 1     (4.14.1) 

 
*

2 2 2(t) x (t) x (t)e    from model 2     

Assume that 1l (t) and 2l (t)  constitute a random sample from a bivariate  normal 

distribution with means zero, variances 
2 2
1 2and   and correlation coefficient  .  

  1 2E e (t) E e (t) 0   
       

In this case the individual forecasts are unbiased and the forecast errors non-

correlated. Form a pair of random variables given by 1 2 1 2l (t) l (t) and l (t) l (t)  .  

In this case  

     
       2 2

1 2 1 2 1 2E e (t) e (t) e (t) e (t)    (4.14.2) 

Given the assumption of unbiasedness, the two error variances and the two expected 

square errors will be equal if and only if this pair of random variables is 

uncorrelated. The test Granger and Newbold propose to evaluate zero correlations is 

based on the sample correlation coefficient.  

 

T

1 2 1 2

t 1

1
T T 2

2 2

1 2 1 2

t 1 t 1

e (t) e (t) e (t) e (t)

e (t) e (t) e (t) e (t)



 

       

 
        

 

 


 

   (4.14.3) 

This coefficient is used to form a test statistic that compares the equality of the 

squared forecast errors from each model.  
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  
1

2(T 3)
Z In(1 r) In(1 r)

2


         (4.14.4) 

Where   is the sample correlation obtained from (4.14.3) and T is the number of out 

of sample predictions. Under the null hypothesis of no correlation, Z is 

approximately distributed N(0,1).  

4.14.3. Test Procedure  

Obtain the forecast errors, 
1 2
(t) and (t)e e   from two competing models, Model 1 

and Model 2. Form the null and alternative hypothesis. Form the test statistic.  

 
1

2( 3) 2(1 ) (1 )       TZ In r In r     (4.14.5) 

 Here,   is the correlation coefficient from (4.14.3) 

For a given significance level  , obtain the critical valve z from the standard 

normal distribution. Reject H0 if Z z . 

4.14.4. Stickler Test  

Another approach compares the accuracy of forecasts generated by different models 

employing a ranking procedure. Here, each model is ranked according to its forecast 

accuracy, the latter being measured by the root mean squared error. A score equal to 

the ranking is assigned to each variable. Aggregate scores are obtained for each of 

the series by summing of the rankings across the given forecast horizon. If the time 

series models have equal forecast accuracy, the scores would have the same 

expected value for each model. A 
2 goodness of fit statistic is used to test for 

differences in forecast accuracy by examining whether the aggregate score differs 

significantly from the expected score, assuming the models had equal forecast 

accuracy. This criterion explicitly compares the complete set of forecasts over each 

period for each model.  

4.15. TESTS FOR NORMALITY  

4.15.2. Skewness and Kurtosis Test  

Mardia (1970) has developed multivariate extensions to the univariate measures of 

skewness and kurtosis in univariate time series models. These can be computed by 
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the following formulae.  

    
3

1
2 1

1, m i i

i

T x xb      
    Skewness   (4.15.1) 

    
2

1
2 1

2, m i i

i

T x xb      
   Kurtosis   (4.15.2) 

 Here   is the mean vector of x(t) and i=1, ….. T.  

In the case when the vector x(t) is distributed multivariate normally, the following 

expectation equalities hold: 

 
1E[b , m] 0       (4.15.3) 

 sE[b , m] m(m 2)     

In order to test the null hypothesis of multivariate normality, Mordia (1970) 

proposes testing each moment individually.  

4.15.3. Test Procedure  

Estimate the skewness and Kurtosis coefficients  

    
3

1
2 1

1, m i i

i

T x xb      
   Skewness   (4.15.4) 

    
2

1
1 1

2, m i i

i

T x xb      
   Kurtosis   (4.15.5) 

Here   is the mean vector of x.  

Form the null hypothesis for each measure. 

 0 : x(t)H  is distributed multivariately normally, N ( , )   

 1 : x(t)H  is not distributed normally  

 Calculate the test statistics, A and B.  

 
1

1

Tb ,m
A b  Skewness       (4.15.6) 

  
1 2

2,mB b m(m 2) 8m(m 2) T    Kurtosis   (4.15.7) 
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For a given significance level,  , choose the critical value   from               a chi-

square distribution with f degrees of freedom, where 
1f b m(m 1) (m 2)    to test the 

skewness and choose the critical value z from the standard normal distributions to 

test the Kurtosis. Reject H0 if  A    skewness; Z   Kurtosis.  

4.16. DIAGNOSTIC CHECKING FOR LINEAR (STATIONARY) TIME 

SERIES MODELS  

4.16.1. Introduction  

After a model being identified and parameters estimated, the problem  is to decide 

whether the model is adequate. The model should be modified when there be an 

evidence of serious inadequacy. No system of diagnostic checks can ever be 

comprehensive. Hence it is always possible that characteristics in the data of an 

unexpected kind can be overlooked. If thoughtfully devised diagnostic checks 

applied to a model fitted to a reasonably large body of data fail to show serious 

discrepancies, it is reasonable to feel more comfortable about using that model. If 

any inadequacies are revealed, they may suggest alternatives that appear more 

appropriate.  

Box and Jenkins suggest two ways to perform diagnostic checking the method of 

over fitting and diagnostic checks applied to residuals. The method of over fitting of 

makes use of the assumption that at a particular ARMA model of order (p,q) 

implicitly imposes the restrictions that in the more general model  

  p p 1 p r

1 p p 1 p r t1 a L ..... a L a L ..... a L y 

         (4.16.1) 

  q q 1 q s

1 q q 1 q s t1 L ..... L L ...... L 

               

The coefficients ap+j, j=1, ……,   and dq+j, j=1, …… s are zero. This is a testable 

hypothesis. The model identified can be extended by adding extra coefficients. The 

augmented model can then be estimated and the standard deviations of the estimates 

of the added coefficients will indicates whether or not the additional coefficients 

differ significantly from zero by usual t-test. Because of the issue of model 

multiplicity, as a practical consideration, in fitting extra coefficients one should to 

add terms simultaneously to both sides of the ARMA model. It would be more 



 

Time Series Regression Models 

©Sahasra Publications 92 

appropriate not add such terms to the autoregressive operator and moving average 

operator sequentially.  

Diagnostic checks applied to residuals are under the assumptions that if a time-series 

model is correctly specified, the error t  constitute a white noise process. If the 

series 
1 n, .....,  are available, natural checks on model adequacy could be based on 

the sample autocorrelations of this series Anderson (1942) has shown that the 

sample autocorrelations of white noise are asymptotically independently normally 

distributed with zero means and standard errors n-1/2. Hence the statistic 
k

2

k

k 1

ˆn


  is 

asymptotically distributed as Chi-square with k degrees of freedom. Here the 
k̂ ’s 

are sample autocorrelations. This statistic can be used to test whether the t ’s are 

uncorrelated.  

In practice, the t ’s are unknown and only the residuals from the fitted ARMA (p,q) 

models, t̂  are available. For a univariate time-series model, the fitted value is the 

one-step ahead forecast error. For example, with an AR(1) model where 1â  is the 

estimate, the fitted value at time t is 1 t 1â y   and the estimated residual t̂  is 

t t 1 t 1
ˆˆ y a y    .  

When sample autocorrelations are calculated from t̂ , as  

 

 

 

n

t t k

t k 1
k n

2

t k

t 1

ˆ ˆ1 (n k)

ˆ1 n



 





 

 






      (4.16.2) 

The statistic  

 
k

2

k

k 1

Q(k) n


         (4.16.3) 

is better approximated by a Chi-Square distribution with k-p-q degrees a freedom as 

shown is Box and Pierce (1970). However, for n<100, the approximation can be 

rather poor. Ljung and Box (1978) suggest using, instead of Q(k).  
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2k

* k

k 1

Q (k) n(n 2)
n k


 


       (4.16.4) 

If several models are estimated and all pass the diagnostic checks, the model 

selection criteria, say, Akaike information criterion could be used to select a specific 

model representation.  

In a diagnostic checking we look at the residuals 
t t t

ˆe y y  , they express the 

variation that the regression model has not been able to explain. We consider the 

residual te  as an estimate of the error t . If the fitted model is correct, the residual 

should confirm the assumptions we have made about the error terms. A histogram of 

the residuals and plots of the residuals et against the fitted values tŷ , against each 

independent variable, and against time are useful at this stage of the analysis. If the 

assumptions in the regression model are satisfied, the histogram of the residuals 

should resemble a normal distribution. The residuals, when plotted ŷ(t)  against 

each independent variable or against time, should vary in a horizontal band around 

zero. Any departure from such a horizontal band will be taken as an indication of 

model inadequacy.  

A plot of et against yt would be meaningless, since the residuals and the dependent 

variable are always correlated, even if the model is adequate. The sample correlation 

ey  between e and y is given by (1-R)1/2.  

4.16.2. Incorrect Functional Form  

Residual plots will indicate whether the functional form of the regression model is 

misspecified. For example, if the true model is described by a quadratic relationship 

but only a linear model is fitted to the data, the residual et, when plotted against tŷ  

or the independent variable, will exhibit a curvilinear pattern. If a constant or a 

linear term in the regression model is incorrectly omitted, the residual plot will show 

a linear relationship between et and tŷ or the independent variable.  

4.16.3. Lack of Fit Tests  

Residual plots are important tools in model diagnostic checking. They provide a 

visual indication of whether the considered model form is adequate and suggest 
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modification of the model if lack of fit is found. These diagnostic tools are quite 

general, since they do not assume a specific alternative hypothesis.  

A more formal test of lack of fit can be obtained if we have genuine replications at 

some of the predictor levels. Genuine replications have to be uncorrelated with all 

other observations. It would not usually be sufficient to take two measurements from 

the same experiment, since in such a case the measurements would probably be 

correlated. The replications can be used to partition the error sum of squares into a 

part that is due to pure error, SSPE, and one that is due to lack of fit, SSLF. Let  us 

assume that we have observed the responses at k different settings of the p predictor 

variables, x1, x2, …., xk. At each level xi we observe ni responses is 

(i) (i) (i)

1 2 ni, , ......, ,y y y  where 
k

i

i 1

n n


 . Then the SSPE contribution at level xi is  

given by  
in

2
(i) (i)

t

t 1

y y


 .  

 Where  
in

(i) (i)
t

t 1

1
y y

ni 

        (4.16.5)  

is the average at level xi. Since one parameters the mean is estimated, this sum of 

squares contribution has in 1  degrees of freedom. Overall, the pure error sum of 

squares is given by  

  
ink

2
(i) (i)

t

i 1 t 1

SSPE y y
 

        (4.16.6) 

and has  
k

i

i 1

x 1 n k


   degrees of freedom. The lack of fit sum of squares is 

given by  

 SSLF = SSE-SSPE 

and has n p 1 (n k) k p 1        degrees of freedom.  
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The following is the concerned ANOVA table. 

Source SS df M.S F 

Regression  SSR p MSR  

 

LF

MSLF
F

MSPE
  

Error  SSE n-p-1 MSE 

Lack of Fit  SSLF k-p-1 MSLF 

Pure Error SSPE n-k MSPE 

Total (corrected for mean) SSTO n-1 MSPE 

If the model is adequate, MSE, MSLF and MSPE all estimate the variances 
2 . If 

there is lack of fit, the mean square error MSE estimates a combination of the 

variance and lack of fit. To test for lack of fit, we look at the ratio of the lack of fit 

and the pure error mean square, LFF MSE MSPE . If there is no lack of fit, their 

ratio has an F distribution with k-p-1 and n-k degrees of freedom. In lack of fit 

situations, this ratio will be larger than the values that can be expected from this 

distribution. Thus lack of it is indicated if  LFF F k p 1, n k .     In such a case 

we must modify the original model. If no lack of fit is indicated, we can pool the 

variance estimates from MSLF and MSPE and use the mean square errors MSE in 

the subsequent significance tests.  

4.16.4. Non-constant variance  

If the scatter plot of et against tŷ  does not full within two horizontal bands around 

zero but exhibits a ‘funnel’ shape, we can conclude that the equal variance 

assumption is violated. In such a case we use weighted least squares or use 

transformations to stabilize the variance.  

Consider the general regression model  

  t t t ty f (x ; )          (4.16.7) 

Where t tf (x ; )    

Let us assume that the variance of the errors is functionally related to the mean level 

t as  

 
2 2

t t tVar (y ) Var ( ) h ( )          (4.16.8) 

 Where h is some known function.  
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Our objective is to find a transformation of the data, g(yt), that will stabilize the 

variance, that is, the variance of the transformed variable g(yt) should be constant. 

Expanding the function g(yt) in a first-orders Taylor series around 
t .  

 
1

t t t t tg(y ) g( ) (y ) g ( )          (4.16.9) 

 Where 
1

tg ( )  is the first derivative of  tg(y )evaluated at t .  

The variance of the transformed variable can be approximated as  

 
1

t t t t tVar g(y ) Var g( ) (y ) g ( )  
           

  
2 2 2

1 1 2
t t t tg ( ) V(y ) g ( ) h( )     

           

In order to stabilize the variance, we have to choose the transformation g(.) such that  

  
1

t

t

1
g ( )

h( )
 


      (4.6.11) 

These transformations not only stabilize the variance, but also lead to simplifications 

in the functional representation of the regression model. 

4.16.5. Serial Correlation Among the Errors  

In ordinary regression models are under the assumption that the errors 

t 1 1(......., , .....)  are uncorrected, when a regression model is fitted on time series 

data, it is likely that the errors are serially correlated. Thus, diagnostic checks that 

test for correlation among the errors are of particular importance. If the correlated 

errors are ignored in the regression models, then the consequences be quite serious. 

For example, let there be a positive serial correlation among the errors, the true 

standard errors of the regression coefficients can be considerably underestimated by 

the usual standard errors t ii
ˆs s c  . This means that if the usual least squares 

procedures are employed in the presence of serially correlated errors, the  parameter 

estimates may appear significantly different from zero when infact they are not. This 

phenomenon is called spurious regression.  [Box and Newbold (1971), Granger and 

Newbold (1974)]. 
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4.16.6. Serial Correlation in a Time Series  

The presence of serial correlation among a time-order sequence of random variables 

 t 1 t t 1....., z , z , z ...... 
 indicates. That the random variables at different time periods 

all correlated. Serial correlation is measured by auto-covariances 
k  or 

autocorrelations k .  

The lag k autocovariance is defined by  

 k t t k t t kCov (z , z ) E (z ) (z ) k 0,1,2,....         (4.16.12) 

Here we have assumed that the mean 
tE (z )   is constant over time and further 

more that the autocovariance depends only on the time difference k, but not on time 

t. This assumption requires that the first two moments (mean  , variance 0  and 

auto-covariance k ) are invariant with respect to changes along the time axis. This 

is called stationarity condition.  

From (1) and the stationarity assumption, it follows that  

 k t t k t k t kE(z ) (z ) E (z ) (z )             (4.16.13) 

The auto-correlations k  are defined as  

  t t k k
k 1 2

0t t k

cov (z , z )
k 0,1,2, .....

Var (z ) Var(z )






   

  

  (4.16.14) 

The set of autocorrelations k , considered as a function of the lag k, is called the 

correlogram or the autocorrelation function. Since k k ,    only non-negative k 

have to be considered. Further 0 1  . Estimates of the auto-covariance k  from a 

sample series 1 2 n(z , z , ...,z )  are given by  

 
n

k t t k

t k 1

1
C (z z) (z z) k 0,1,2, .....

n


 

       (4.16.15) 

 Where z  is the sample mean and  
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n

t

t 1

1
z z

n 

   

Estimates of the auto-correlations k  are given y  the sample auto-correlations  

 

n

t t k

k t k 1
k n

20
t

t 1

(z z) (z z)
C

r
C

(z z)



 



 

 






     (4.16.16) 

Basic results for the distribution theory of sample auto-correlations were derived by 

Bartlett (1946). He showed, among other results, that if there is no correlation 

among observations that are more than q steps apart k( 0 for k q),    the 

variance of  kr  can be approximated by  

 

q
2

k k

k 1

1
Var (r ) 1 2 for k q

n 

 
    

 
     (4.16.17) 

In the special case when all observations are uncorrelated, ( k 0   for k>0), this 

equation reduces to  

 
1

kVar (r ) n for k 0        (4.16.18) 

For large n and k 0  , the distribution of  kr  will be approximately normal. Hence, 

one can test the null hypothesis  0 k(H : 0)   by comparing kr  with its standard 

error 
1 2n

 and reject H0 at the common significance level 0.05   if  

k

k1 2

r
n r 1.96

n
 
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CHAPTER - V ESTIMATION IN TIME SERIES REGRESSION 

MODELS 

5.1. INTRODUCTION 

The classical linear regression mode is 

  Y XB U         (5.1.1) 

  E(U) 0        (5.1.2) 

  1E(UU ) 2

uI         (5.1.3) 

  X is fixed and has rank (k+1)<T    (5.1.4) 

Here       Y is a Tx1 vector of observations on the dependent or  

    endogenous variable.  

     X is a Tx(1+k) matrix of observations on the k independent or  

               exogenous variables and the intercept vector (of is)   

     B is a (1+k)x1 vector of coefficients  

     U is a Tx1 vector of disturbances  

     E denotes the “expected value of”, i iE(u) u Pr ob (u ) Mean of U   .  

The first assumption of the classical linear regression model specifies that each 

observation on the endogenous variable y can be expressed as a linear function of 

the exogenous variables x plus the disturbance U. This can be expressed as  

t 0 k tk t

k

Y X u     

The second property of the model implies that the disturbances have no systematic 

components and therefore each has zero expectation. The third assumption says that 

expected value of 2

tu  is 2

u  for all t and that the covariance of ut with tu    zero 

where ( 0)  .  

The final property of the classical model specifies that the Xtk are fixed in repeated 

sampling, uncorrelated with any omitted variables and thus independent of the 

disturbance ut. 
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Given the sample data on y and x and the prior assumptions of equations (5.1.1) to 

(5.1.4) the researcher seeks to estimate the model  

  ˆ ˆY X c        (5.1.5) 

Such that the sum of the squared error 1ˆ ˆU U  is minimized. By definition Û  is 

expressed.  

 ˆ ˆU Y XB        (5.1.6) 

ordinary least-squares estimation involves minimizing  

    
1

1 ˆ ˆˆ ˆU U Y X Y X           

     
1 1

1 1 ˆ ˆ ˆ ˆY Y Y XB XB Y XB XB      (5.1.7) 

  
1 1 1 1 1ˆ ˆ ˆY Y 2B X Y B X XB      

Solving for the parameter B̂ so that 1ˆ ˆU U  is minimized requires differentiating 

equation (5.1.7) with respect to B̂ .  

 
1

1 1
ˆ ˆU U ˆ0 2X Y 2X XB
B̂


  


  

  1 ˆXY X X         (5.1.8) 

By setting equation (5.1.8) equation to zero and rearrange terms to isolate B̂ , we 

obtain ordinary least squares (OLS) estimator.  

 1 1 ˆX Y X XB 0    

 
1 1ˆX XB X Y  

    
1 1

1 1 1 1ˆX X X XB X X X Y
 

  

  
1

1 1ˆ X X X Y


        (5.1.9) 

In case of simple bivariate regression the OLS estimator in equation (5.1.9) has the 

familiar algebraic expression,  
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   

 

t t

t

2

t

t

X X Y Y
ˆ

X X

 

 





     (5.1.10) 

A few additional preliminary results need to be established. First it must be 

demonstrated that the OLS estimator B̂ is unbiased, that is an the average it hits the 

target parameter B2. This is shown by substituting the expression for y in equation 

(5.1.1) into the expression for B̂ in equation (5.1.9)  

    
1

1 1B̂ X X X XB U


   

    
1 1

1 1 1 1X X X XB X X X U
 

      (5.1.11) 

  
1

1 1B X X X U


   

The unbiasedness of B̂ is proved by taking the expected value of equation (5.1.11).  

 
1

1 1ˆE(B) B E X X X U
  

  
      (5.1.12) 

  
1

1 1B X X X E(U)
  

  
 by equation  (5.1.4) – (5.1.12) 

 ˆE(B) B  by equation (5.1.2) 

Finally the variance of B̂ in the classical model must be generated because greater 

parts of the discussion evaluate the precision and significance of parameter estimates 

when disturbances are autocorrelated. The variance-covariance matrix of the OLS 

estimator is defined as  

 1ˆ ˆ ˆVar (B) E (B ) (B )   
 

    (5.1.13) 

It is convenient to use the expression for B̂ in equations (5.1.11) and to rewrite the 

equation (5.1.13) as  

1
1 1 1 1 1 1ˆVar (B) E B (X X) X U B B (X X) X U B             

 
1

1 1 1 1 1 1E (X X) X U (X X) X U          
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 1 1 1 1 1 1E (X X) X UU X(X X)        (5.1.14) 

 1 1 1 1 1 1(X X) X E(UU ) X(X X)       by equation (5.1.4)  

  1 1 1 2 1 1

uE(X X) X I X(X X)     by equation (5.1.3) 

2 1 1

u
ˆVar (B) (X X)   (Since 2

u  is a scalar quantity and the identity matrix may be 

suppressed).  

In the more familiar bivariate case, the variance of the OLS estimator may be 

expressed.  

  
2

2

u t

t

ˆVar ( ) X X         (5.1.15) 

Autocorrelated Disturbances and Generalized Least-Squares Estimation  

The consequences of Autocorrelation  

What are consequences of serially dependent disturbances for statistical estimation, 

hypothesis testing and casual inference? The classical model is clearly no longer 

appropriate. In particular the assumption (3) must be revised as follows.  

  1 2

uE(UU )          (5.1.16) 

Where   is a TxT, symmetric, positive definite matrix. The   specification in the 

revised, generalized linear regression model allows for both heteroscedasticity (non-

constant diagonal elements) and autocorrelations (non-zero off-diagonal elements). 

Here we are concerned with problems of time-series estimation and 

heteroscadasticity is commonly a cross-sectional problem. For our purpose, the   

matrix is considered to have is in the diagonal and autocorrelation parameters in the 

off-diagonal cells. Hence in scalar notation equation (5.1.16) implies,  

 2

t t uE (u u )     for 0    (homoscadasticity)  (5.1.17) 

           =   for 0    (autocovariance)  

Where   is the lag   autocovariance.  

The first point to be made concerning the impact of autocorrelated disturbances is 

that OLS estimates remain unbiased. From equation (5.1.11) 
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   
2

2

u t

t

ˆVar ( ) X X         (5.1.18) 

Since in the revised, autocorrelation model x remain fixed or 1E (x U)  remains zero, 

the OLS estimates still has expectation B.  

  
1

1 1ˆE (B) B E X X X U
  

  
 

   
1

1 1B E X X X E(U)
  

  
     (5.1.19) 

 ˆE (B)    

Hence it is possible to estimate a regression model in the conventional (OLS) 

manners without danger of bias even if the disturbances are serially correlated. 

However, the variance of B̂  in the presence of autocorrelated disturbances is no 

longer that of the classical model in equation (5.1.14), but is  

    
1

ˆ ˆ ˆVar (B) E B B   
  

   see equation (5.1.14) 

     
1 1

1 1 1 1E X X X (UU ) X X X
  

  
    (5.1.20) 

     
1 1

1 1 2 1

uE X X X ( ) X X X
    

  
 by equation (5.1.16)  

   
1 1

2 1 1 1

u
ˆVar (B) X X X X X X

 

    

Thus, when disturbances are interdependent, which frequently is true in time series 

models, OLS regression yields biased estimates of the coefficient variances. Since 

the bias is generally negative, the estimated variances and standard errors understate 

the true variances and standard errors. This produces inflated t-ratios, a false sense 

of confidence in the precision of the parameter estimates, and often leads to spurious 

attributions of significance to independent variables. Moreover the OLS estimate of 

the disturbances covariance 2

u  is also biased and since the bias is typically negative, 

R2 as well as t-and F-statistics tend to be exaggerated.  

This result is straight forwardly demonstrated. The true disturbances are never 

observed directly but must be derived from the fitted model and hence are “filtered” 
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though the x’s. Thus the residuals tû  are generated,  

ˆ ˆU Y XB   

1 1 1Y X(X X) X Y    by equation (5.1.9) 

1 1 1(XB U) X(X X) X (XB U)      by equation (1) 

1 1 1 1 1 1(XB U) X(X X) X XB X(X X) X U        

1 1 1(XB U) XB X(X X) X U        

1 1 1U X(X X) X U   

1 1 1

TI X(X X) X U     

MU  

Where 1 1 1

TM I X(X X) X     

Equations (5.1.21) establishes that the residuals of the classic model are a linear 

function of the unknown disturbances. The sum of the squared residuals the quantity 

minimized by least-squares regression can therefore be expressed,  

 1 1 1ˆ ˆU U U M MU  

  1 2U M U        (5.1.22) 

  1U MU  (Since M is symmetric and idempotent).  

  
1 1 1 1

TU I X(X X) X U     by equation  (5.1.21) 

The expected value of equation (5.1.22) yields the classical estimator of the 

disturbance sum of squares in terms of the true disturbance variance 2

u ,  

    1

1
ˆ ˆE U U E U MU  

  1Etr U MU (Since U1MU is scalar and therefore equal to its trace) 

  1

rEt MUU  (Since tr AB = tr BA)  
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 = 2

u trM         (5.1.23) 

 = 2 1 1 1

u Ttr I X(X X) X     by equations (5.1.21) and (5.1.22) 

 2 1 1 1

u T rtr (I ) t (X X) (X X)       

 2

u r T k 1t (I ) tr(I )    

 2

u (T k 1)     

Where k denotes the number of exogenous variables and tr denotes trace-the sum of 

the diagonal elements of a matrix. Thus an unbiased sample estimate of the 

disturbance variance in the classical case is given by  

 2 1

u
ˆ ˆU U (T k 1)          (5.1.24) 

If scalar algebra this is expressed as  

 2 2

u t

t

ˆ û (T k 1)         (5.1.25) 

When the disturbances are autocorrelated, the expectation of 1ˆ ˆU U  is no longer 

2

u tr M, but rather 

  1 1ˆ ˆE U U tr (MUU )  by equation (5.1.23) 

  2

u tr (M )    by equation (5.1.16)  

  
2 1 1 1

u tr X(X X) X          (5.1.26) 

  2 1 1 1

u tr tr (X X) X X     

  
2 1 1 1

uT tr (X X) X X       by the specification in  

                        equation (5.1.16) that   is TxT  with is in the diagonal.  

Hence the classical OLS estimator of the disturbances variance is biased to the 

extent that 
1 1 1tr (X X) X X   differs from

1 1 1tr (X X) X X   . Further more this bias 

is negative (towards zero) whenever positive autocorrelation predominates in 
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regressors and disturbances, which is generally the case for socioeconomic and 

political time series.  

This result has two implications that are of interest. First the ˆVar (B) is biased not 

only because 1 1 1 1 1 1 1(X X) X X (X X) (X X) ,     but also because 2 2

u u
ˆE ( ) .    This 

means that if an equation is estimated via ordinary least squared when regressors and 

disturbances are (positive) autocorrelated, we will obtain a spurious underestimate of 

the error variance and an inflation of the R2. The model will appear to provide a 

much better fit to the empirical data than is actually the case.  

Nevertheless OLS regression in the presence of seriously correlated disturbances is 

not necessarily disastrous-especially when the functional form of a model is not in 

question because of well established theory, prior empirical results and so on. More 

problematic and more typical is the situation where the researcher analyzes many 

equations in the process of evaluating competing hypotheses and equally plausible 

alternative functional forms. 

5.2. SOME MODELS FOR TIME-DEPENDENT DISTURBANCES 

5.2.1. First-Order Autoregressive Process  

The time-dependence model that has received the most attention in the econometric 

literature is the first-order autoregressive process [AR(1)].  Here each disturbance ut 

depends only on its own previous value (the Markov Property) and a random, “white 

noise” component. The basic model is as follows: 

 t 0 k tk t

k

Y X      (equation to be estimated)   (5.2.1) 

 t 1 t 1 1u u      (disturbance time-dependence process)   (5.2.2) 

 11 1     (Stationary  Condition)      (5.2.3) 

 t t t tE (u ) E (u ) E (u ) 0 0       

   2

t t uE          0     (5.2.4) 

           = 0   0  

The variance of  ut in the AR(T) process is derived as follows: 
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 2 2

u tE (u )   

    1 t 1 t 1 t 1 tE u u 
      
 

     (5.2.5) 

 2 2 2

1 t 1 1 t 1 t tE(u ) 2 E (u ) E( )             (5.2.6) 

By assumption (5.2.1) that ut follow a stationary stochastic process and therefore 

have identical variance for all t, and by assumption (5.2.4) that the lagged ut are 

independent of the random  

 t components, the result in equation (5.2.5) becomes  

2 2 2 2

u 1 u             

2 2 2 2

u 1 u      

2 2 2

u u(1 )           (5.2.7) 

2 2 2

u 1 0(1 )       

Where 0  denotes the variance u. The autocovariance and autocorrelation function 

for the AR(1) model (denoted   and   respectively) are similarly generated. 

Autocovariances are derived by multiplying through the expression for ut (equation 

(5.2.2) by tl ag u   and taking expectations. Hence the autocovariance of utand  ut-1 

is obtained.  

 1 t 1 1 t 1 tE u ( u u ) 
          

 2

1 1 t 1 t 1 tE(u ) E (u )            (5.2.8) 

 2

1 u   by equations (5.2.3) and (5.2.4) 

Parallel operations give the autocovariance of ut and ut-2.  

 2 t 2 1 t 1 tE u ( u ) 
        

     1 t 2 t 1 t 2 tE u u E u       

 1 t 2 t 1E u u    by equation (5.2.4)    (5.2.9) 
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1 1    by equation (5.2.3)  

2 2

1 u    by equation (5.2.7) 

Successive operations of the same sort would show the general autocovariance 

function for a first-order autoregressive model to be 

2

u1


           (5.2.10) 

u1


    

It is now easy to desire the general autocorrelation function for AR(1) process. The 

autocorrelation of t tu and u   is conventionally defined,  

 t

t t

Cov (u )

V(u ) V(u )


 



         (5.2.11) 

  
2

u

r


 

  
u

r

r

 by equation (5.2.3)    (5.2.12) 

It is now directly follows from equation (5.2.11) that the lag autocorrelation function 

of the ut is  

  1


          (5.2.13) 

Equation (5.2.12) is an important because it describes the autocorrelation function 

when the disturbance is infact generated by a first-order autoregressive mechanism.  

5.2.3. Second and Higher Order Autoregressive Processes  

Although AR(1) process have received the most attention in the literature, there is 

no reasons to expect a priori that autocorrelation of disturbances in time-series 

regression models will be generated by such simple mechanism. It is probably 

accurate to say that autoregressive processes of order higher than two are relatively 

uncommon-unless the data have cyclical or seasonal variability, in which case 

appropriate dummy variables should appear in the model.  
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Consider a regression model where the disturbance follows a second-order 

autoregressive scheme [AR(2)] such that ut depends on ut-1, ut-2 and a random 

perturbations,  

t 0 k tk k
k

y X u     (equation to be estimated)    (5.2.14) 

t t1 t 1 2 t 2
u u u v

 
    (disturbance time-dependence-process) (5.2.15) 

 2 1 1     

 2 1 1     (stationary conditions)   (5.2.16)  

 2 1     

 

t t t tE (u ) E ( ) E (u ) 0      0  

2

t t uE ( )       0  for all t  (5.2.17) 

        = 0   0  

 

The variance of tu  in the AR (2) model is derived as follows. 

 2 2

u tE (u )   

   t 1 t 1 2 t 2 tE u u u 
     
 

 by equation (5.2.12)  (5.2.18) 

2

1 1 2 2 u       (Since the only part of ut correlated with ut is the current perturtation

t ) 

Dividing equation (5.2.18) by 2

u  allows the variance of the process to be expressed 

in terms of  2s, s and ,    

 
2

2 2

1 1 2 2 u2 




      


 by equation (5.2.10) 

 2 2

1 1 2 2 u1              (5.2.19) 
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 2 2

u 1 1 2 2 0(1 )          

The autocovariance and autocorrelation functions are generated analogously by 

multiplying the equation for ut by tu   and taking expectations. The autocovariance 

of ut and ut-1 is  

  t1 t 1 1 t 1 2 t 2E u u u  
 
 

      

 2

1 t 1 2 t 1 t 2 t 1 tE (u ) E (u u ) E (u )             (5.2.20) 

 2

1 u 2 1       by equations (5.2.16) and (5.2.17) 

 Similarly the autocovariance of ut and ut-2 is derived  ,  

  2 t 2 1 t 1 2 t 2 tE u u u  
     
 

 

 2

1 t 2 t 1 2 t 2 t 2 1E (u u ) E (u ) E (u )          

 2

1 1 2 u       by equations (5.2.16) and (5.2.17) 

Recall that 0  denotes 2

u , successive operations would shows the autocovariance 

function of the second-order autoregressive process to be  

 1 2 2 0                (5.2.21) 

The autocorrelation function for this model follows straight forwardly  is defined 

as follows,  

  1 2 2 0             

 1 1 2 2 0                 (5.2.22) 

Our interest is primarily on the autcorrelation function because it specifies the 

behaviour of the  when the disturbances in a particular equation do follows an 

AR(2) process.  

Autoregressive processes of order greater than two are likely to be less common 

empirically. The essentials involve minor extensions of previous results. Here the 

disturbance is generated by a th  order autoregressive scheme,  



 

Time Series Regression Models 

©Sahasra Publications 111 

 t 1 t 1 2 t 2 t tu u u ...... u              (5.2.23) 

 The variance of ut is easily shown to be  

 
2

2

u

1 1 2 2 p b1 .....

 
     

      (5.2.24) 

 The autocovariance functions is  

 1 2 p1 2 ..... 0                    (5.2.25) 

Finally the autocorrelation function of a pth order autoregressive model is given by  

 1 2 p1 2 p...... 0                   (5.2.26) 

These general expressions and particulars equation (5.2.26) can be used to deduce 

the empirical behaviour of disturbances generated by an autoregressive process of 

any order.  

5.2.4. First-Order Moving Average Processes  

An alternative class of models for time-dependent disturbances is provided by 

moving average processes. In contrast to autoregressive models, disturbances 

generated by moving average schemes depend only on a moving linear combination 

of random variables t  with coefficients 1 p(1, , ......, )  . Hence a random shock 

t enters the system at time t and disturbs the equilibrium level of ut for (p+1) 

periods before dissipation. The autocorrelation functions and correlograms produced 

by moving-average. Processes differ sharply from those of autoregressive models.  

 In the first-orders moving-overage process [MA(1)] we have  

 t 0 k tk t

k

Y X v      (equation to be estimated)  (5.2.27) 

 t t 1 t 1u u      (disturbance time-dependence)  (5.2.28) 

 11 1       (invertibility condition)  (5.2.29) 

 t t t tE (u ) E ( ) E (u ) 0      

 2

t tE ( ) 0         for all t  (5.2.30) 

   =0 0  
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The variance of the first-orders moving –average model may be derived as follows,  

 2 2

u tE (u )   

     t 1 t 1 t 1 t 1E  
       
 

 

     2 2 2

t 1 t 1 t 1 t 1E ( ) 2 E E 
        
 

   (5.2.31) 

  2 2 2

1             (5.2.32) 

  2 2 2

u 1 0(1 )           (5.2.33) 

The MA(1) autocovariance function is similarly generated. Thus the autocovariance 

of ut and ut-1 is  

 1 t t 1E (u u )   

    t 1 t 1 t 1 1 t 2E   
       
 

 

 2 2

t 1 1 t 2 1 t 1 1 t 1 t 2E ( ) E ( ) E ( ) E ( )                 (5.2.34) 

 2

1 u    equation (5.2.32) 

Parallel operations yield autocovariances of greater lag.  

 For example, 2 is obtained,  

2 t t 2E (u u )   

    t 1 t 1 t 2 1 t 2E   
       
 

 

 2

t t 2 1 t t 3 1 t 1 t 2 1 t 1 t 3E ( ) E ( ) E ( ) E ( )                  (5.2.35) 

 = 0 by equation (5.2.30)  

It should now be apparent that in first-orders moving-average processed all 

autocovariances beyond lag 1 are zero. Thus the generals autocovariance function 

for the MA(1) model is written,  

 2

u, 1              (5.2.36) 

  =0 1   
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Obviously, the autocorrelation function of the MA(1) process, defined by 

0 ,      shares the same property.  

Thus,  

 
2

1 u1 1
1 2 2 2

0 1 u 1(1 ) (1 )

  
   

    
     (5.2.37) 

and successive lag   are zero. Therefore the general autocorrelation function of the 

MA (1) process, defined by  
0

,



 


 shares the same property. Thus  

 1
1

0


 


 

 
2

1

2 2

1(1 )





 


 
 

 1

2

1(1 )




 
 

and successive log   are zero. Therefore the general autocorrelation function is 

expressed  

 1

2

1

1
1




    

 
     (5.2.38) 

  =0 1    

The results in equations (5.2.37) and (5.2.38) establish that the autocovariances and 

autocorrelations of the first-order moving-average process have a cutoff after log 1. 

Second and Higher-Order Moving-Average Processes  

The essential results of Second and Higher-Order Moving-average process follows 

from those developed above consider a regression model where the disturbance 

follows a Second-Order Moving Average Scheme MA(2), 

 t 0 k t k t

k

Y X u     (equation to be estimated)   (5.2.39)

 t t 1 t 1 2 t 2u        (disturbance time dependence process)  (5.2.40)  
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 2 1 1    

 2 1 1        (invertibility conditions)    (5.2.41) 

 21 1     

 t t tE (u ) u 0    

 2

t tE (u ) 0                (5.2.42) 

   =0 0   

The variance of the MA(2) model is  

 2 2

u tE (u )   

     t 1 t 1 2 t 2 t 1 t 1 2 t 2E    
           
 

   

  2
t t1 t 1 2 t 2E ( ) 2 E ( ) 2 E (u )           

  2 2 2 2

1 2 t 1 t 2 1 t 1 2 t 22 E ( ) E( ) E( )              (5.2.43) 

 

2 2 2 2

u 1 2

0

(1 )      

 
 

 

The autocovariance function is derived analogously,  

1 t t 1E (u u )   

   t 1 t 1 2 t 2 t 1 1 t 2 2 t 3E     
           
 

 

2 2

t t 1 1 t t 2 2 t t 3 1 t 1 1 t 1 t 2E ( ) E ( ) E ( ) E ( ) E ( )                    

 
2 2

1 2 t 1 t 3 2 t 2 t 1 1 2 t 2 2 t 2 t 3E ( ) E ( ) E ( ) E ( )                      

(5.2.44) 

 
2

1 1 2( )        by equation (5.2.42)  

2 t t 2E (u u )   
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   t 1 t 1 2 t 2 t 2 1 t 3 2 t 4E     
           
 

 

2

t t 2 1 t t 3 2 t t 4 1 t 1 t 2 1 t 1 t 3E ( ) E ( ) E ( ) E ( ) E ( )                      

2 2

1 2 t 1 t 4 2 t 2 2 1 t 2 t 3 2 t 2 t 4E ( ) E ( ) E ( ) E ( )                      

(5.2.45) 

2

2 u    by equation (52.2.42) 

3 t t 3E (u u )   

   t 1 t 1 2 t 2 t 3 1 t 4 2 t 5E     
           
 

 

2

t t 3 1 t t 4 2 t t 5 1 t 1 t 3 1 t 1 t 4E ( ) E ( ) E ( ) E ( ) E ( )                      

2

1 2 t 1 t 5 2 t 2 t 3 2 1 t 2 t 4 2 t 2 t 5E ( ) E ( ) E ( ) E ( )                       

          (5.2.45) 

2

3 u    by equation (52.2.42) 

In generalized notation, the autocovariance function for the second order moving-

average process is therefore,  

 
2

1 1 u( ) 1, 2           

  =0  2       (5.2.47) 

Since 

0

,



 


 the general autocorrelation function for the MA (2) mechanism 

follows directly, 

 
 

 

2

1 1

2 2 2

1 2

1
1, 2

16

  





     
   

   
 

 1 1

2 2

1 2

1, 2
1

 


   
   

   
 

  =0  2    
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Hence in the second-order moving-average process the autocovariance and 

autocorrelation functions are zero after lag 2. Moving-Average models of higher 

order [MA(p1)] have analogous properties, that is, autocovariances and 

autocorrelations exhibit a cutoff beyond  lag p.  

In the pth order moving-average process we have  

 t t 1 t 1 2 t 2 p t pu ......                (5.2.48) 

The 
tu  in this model have variance  

 
2 2 2 2 2

u u 1 2 p 0(1 ..... )             (5.2.49) 

 and covariance 

  2

1 1 2 2 p p..... .                  1, 2 , ... p    (5.2.50) 

= 0       p      

Finally, and  most importantly, the autocorrelation function of the MA(p) process is  

1 1 p p

2 2

1 p

.....
1, 2, ..... p

1 ....

  



     
    

  
 

 = 0    p      (5.2.51) 

Like higher-orders autoregressive models, moving average processes of order 

greater than two are likely to be rare in practice.  

5.3.2. Estimation of an ARIMA Model  

The parameters 
2

j j, ,    are generally estimated by the maximum likelihood 

method or a least squares technique. The methods are applied assuming the orders 

j j jp , d , q  as fixed. ARIMA (p, d, q) model is  

 
d *

i t(L) x (L)            (5.3.2) 

Where t tt ’s are nonzero, uncorrelated variables with the same variance 
2 . The 

roots of the polynomials and   have modulus greater than 1. The process 
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d

t tx    is then an ARMA (p, q) process such as  

*

t t(L) (L)            (5.3.3) 

If we have x1, ………. xT0 as available observations of the process {xt} we can 

compute the dth order differences  

d

d 1 d 1

d

T0 T0

x

w x

. .

. .

. .

. .
   

 

  

   

We may suppress the constant 
*  so long as we replace t  by t t̂     with 

*

1 p(1 .... )      . We suppose 
* 0,   but results can be extended to the 

case 
* 0   by replacing  t  by t̂ . The additional parameter   can be estimated 

in the same way as the other. Where there is a constant 
* , another frequently used 

method to suppress it is replace the process    with the centered process  t 

and to estimate the other parameters afterwards. Finally, we have to solve the 

estimation problem of the parameters of an ARMA (p, q) without a constant, of the 

parameters 
2

1 p 1 q,....., , ........ , ,      from the information contained in the 

observations denoted by Z1, …..,ZT, T=T0-d. We assume that t  are normal in order 

to derive the asymptotic properties of the estimators more easily. 

5.3.3. The case of ARMA (o, q)  MA(q) 

Likelihood or joint density of the model for the observations 1 2 Tz , z ...., z .  We have 

T tz (L) , t 1, ...., T     

 or 
q

t t i t i

i 1

z 



          (5.3.4) 
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Here 
t  are assumed normal. The vector 

1

1 Tz (z , ....., z )  can be expressed as a 

linear transformation of the vector  1

1 qi T....,    , therefore it is normally 

distributed. We write a matrix M( )  such that 
tz M( )  and derive from this the 

density of z. This will be the density of the normal distribution 

 2 1N 0, M( ) M( )   . But, this method is not the most suitable to solve the 

likelihood maximization problem, since it implies the computation of the matrix 

 
1

1M( ) M( )


  , the dimension of which is T. Let us start from the system  

  1 q 1 q    

  ..............  

  -1 = -1 

  1 1 1 0 q 1 qz ..... .            (5.3.5) 

  2 2 1 1 q 2 qz ..... . t       

  ......................................  

  T t 1 T 1 q T qz .....           

Let us imagine that we substitute 1  in the expressions for 2  with a function of 

0, 1 qt ......., t   then 1 and 2  in the expression for 3  with a function of 

0, 1 qt ......., t   and so on. The we get  

  xNZ x         (5.3.6) 

 Here N is a (T q) T   matrix equal to  

  

1

U

A ( )

 
 

 
 and  

   * 1 q 0, ...., ,     
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x is a (T q) q   matrix of the type 
q

2

I

A ( )

 
 
  

,   

1A ( )  is a TxT lower triangular matrix with unit elements along the main diagonal 

and 
2A ( )  is a Txq matrix. 

 Equation (5.3.6) can also be written as  

   xX N
z

 
   

 
       (5.3.7) 

The square matrix (x  N) is lower triangular with unit elements along the main 

diagonal. Hence its determinant is equal to one. We get the density of the random 

vector  
1

11
* z , by replacing the vector  by 

t
*Nz in density of .  

We obtain 

1

2 (T q) 2 2 * *

1 1
exp (Nz x ) (Nz x )

(2 ) 2

 
      

  (5.3.8) 

We compute the marginal distribution of z from the distribution of  

*c

z

 
 
 

. The 

orthogonal projection of Nz on the subspace of RT+q spanned by the columns of x is 

given by xX .  

Here  
1 1 1

* (X X) X Nz    

By Pythagoras’s theorem we write (5.3.8) in the form  

   
1

1 1

2 (T q) 2 2 * * * * * *

1 1
exp (Nz X ) (Nz X ) X X

(2 ) 2

 
           

 

(5.3.9) 

 We derive the density of z by integrating with respect to 
*

 . 

We have  
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 
 

1 2
1 1

T X XT 2 22

1 1
L det (X X) exp (Nz ) (Nz X )

22

  
     

 (5.3.10) 

 Let us denote 
1

* *
S( ) (Nz Xt ) (Nz Xt )     

We get  

  2 1

T 2

T T 1 S( )
In L In2 In In det (x x)

2 2 2 2

 
    


 

This log likelihood can be maximized with respect to the parameters   and 
2  to 

determine the maximum likelihood estimators.  

 Finding partial derivative of TIn L  with respect to 
2 , we get 

  T

2 2 4

In L T S( )

2 2

  
  

  
  

From which we get  

  
2 S( )

T


         (5.3.11) 

Substituting it in the log-likelihood, we get  

  * 1

T

T T S( ) 1 T
In L In 2 In In det (x x)

2 2 T 2 2

 
     

Finally, the function to be minimized is  

  * 1

TI T In S( ) In det (x x)        (5.3.12) 

Here there are two kinds of methods to find an estimator of  . 

1. The exact methods aimed at minimizing 
*

Tl  directly, using numerical 

methods.  

2. The least squares methods aimed at minimizing S( ) , on the basis that the 

second term of 
*

Tl  becomes negligible with respect to the first as T increases. 

They allow the use of simple algorithms to compute the value of the 

objective function. These algorithms are generally linked to recursive 
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methods of forecast computations. One of such procedures, proposed by Box 

and Jenkins is back forecasting. 

Equation (5.3.9) shows that 
*  is conditional expectation of 

*  given z. 

Denoting by   the conditional expectation of  given z. We use relationship 

(5.3.6) to get  

 
*Nz x    and  

S( )  can be written as  

 
T

2 2

i

i 1 q

S( ) 

 

          (5.3.13) 

This interpretation of S( )  allows the deviation of a simple computation rule for a 

given  . We first determine *  by back forecasting. We have  

1 q 1 q 1 1 q i q 1 2qz .........             

That is  

 1 q 1 qz ,    

Since 1 q i 0, i 1, ..., q     

We have 2 q 2 q 1 1 qz       

0 0 1 1 q 1 1 qz .....

.................................

        

 

Thus, *  is known when the forecasts i iz E (z z), i 1 q, ..., 0    are known. 

The computation of iz is easily done by using the forward representation of the 

process z.  

  t (F) tz     

  
q T

0 i i i i

i 1 i 1

z z z


 

           (5.3.14) 
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Here the  ’s are the same as the ones used in the forward forecast, that is the 

coefficient of the long division of 1 by  . The 
i , i 1,....,T   are computed 

recursively using the expressions (5.3.5). This fast computations of  S( )  translates 

into the possibility of using numerical optimization algorithms. 

5.3.4. ARMA (p, q) Estimation  

The least squares methods can be generalized to the case of an ARMA (p, q) 

extending the case of an MA(q) process described above. The basic intuition behind 

the treatment of an ARMA (p, q) is that is that it can be written in a moving average 

form  

  i t i

i 0







   

Which can be approximated by an MA(q) process  

 i t i

i 0







   

Where Q is large enough. For all practical purposes we need to solve the problem  of 

the choice of Q. we have seen that for an MA(q), the iz  are o for i q  . In the 

ARMA (p, q) case we will stop the backward forecast when the iz ’s become 

negligible. They we have a way of computing.  

T
2

i

i 1 q

S ( , )
 

     

for given   1

1 p,.....,     

   1

1 p,.....,     

which can be minimized numerically.  

Initial Values  

The optimization algorithms used in the various estimation methods need initial 

values for the parameters. The choice of the initial values is important, since, as the 



 

Time Series Regression Models 

©Sahasra Publications 123 

one hand it reflects on the number of needed iterations to reach the optimum, on the 

otherhand it results in the attainment of a local or global optimum.  

5.5. GENERALIZED LEAST SQUARES METHOD OF ESTIMATION 

5.5.1. Introduction  

 The standard linear model is  

  Y X        (5.5.1) 

 Here  Y is the nx1 response vector  

  X is annxp model matrix  

    is a px1 vector of parameters to estimate 

   is an nx1 vector of errors  

Let us assume that 
2

n nN (0, I ),   the familiar ordinary least squares (OLS) 

estimator of   , 

 bOLS =
1 1 1(X X) X Y

     (5.5.2) 

with covariance matrix  

 V(bOLS) =
2 1 1(X X)      (5.5.3) 

More generally, we can assume that nN (0, )  , where the error-covariance 

matrix   is symmetric and positive definite. Different diagonal entities in   

correspond to non-constant error variances, while non-zero off-diagonal entries 

correspond to correlated errors. Suppose that   is known. Then, the log-likelihood 

for the model is  

L( ) 1 1

e e e

n 1 1
log log (2 ) log (det ) (Y X ) (Y X )

2 2 2

 
           

         (5.5.4) 

Which is maximized by the generalized least squares (GLS) estimator of  ,  

1 1 1 1 1

GLSb (X X) X Y           (5.5.5) 
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with covariance matrix  

 
GLS

1 1 1

(b )
V (X X)         (5.5.6) 

For example, when   is a diagonal matrix of unequal error variances, then 
GLSb  is 

just the weighted least squares (WLS) estimator. In a real application, the error 

covariance matrix   is not known, and must be estimated from the data along with 

the regression coefficients  . There are too many elements in 
n(n 1)

2


   distinct 

elements to estimate the model without further restrictions with a suitably restrictive 

parameterization of  , the model can be estimated by maximum likelihood or 

another appropriate method. 

5.5.2. Serially Correlated Errors  

When the observations represent different moments or intervals of time, usually 

equally spaced, then the errors from  a regression model are unlikely to be 

independent is in time series data. Let us assume that the process generating the 

regression errors is stationary. That is, all of the errors have the same expectation 

(assumed to be 0) and the same variance 
2( ) , and the covariance of two errors 

depends only upon their separation ‘s’ in time.  

  
2

t t s t t s sC ( , ) C ( , )            (5.5.7) 

 Where s  is the error autocorrelation at lag ‘s’.  

Here, the error-covariance matrix has the following structure.  

n 1 n 2 n 3

1 1 n 1

1 1 n 2

2 2

1 ........

1 ........

i........

. . . ........ .

. . . ........ .

. . . ........ .

  





  

   
 
   
 
 

      
 
 
 
 
  

   (5.5.8) 
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If we know the values of  
2  and  ’s then we could apply this result to find the 

GLS estimator of   in a time series regression, but, these are generally unknown 

parameters. Further, while they are many fever than the number of elements in the 

unrestricted error-covariance matrix  , the large number (n-1) of different  ’s 

makes their estimation impossible without specifying additional structure for the 

autocorrelated errors. The first order autoregressive process AR(1).  

  t tt 1        (5.5.9) 

Here, the random shocks t  are assumed to Gaussian white noise, 
2N, D (0, ) . 

Under this model 
s

s1 ,      and 
2 2 2(1 )   . As a correlation, 1  , 

the error autocorrelations s  delay exponentially towards 0 as increases. Higher 

order autoregressive models are a direct generalization of the first order model, the 

second order autoregessive model AR(2) is  

t t1 t 1 2 t 2             (5.5.10) 

In contrast, in the first-order moving average process, MA(1), the current error, 

depends upon the random shock from the current and previous periods,  

  t t t 1        (5.5.11) 

and higher-order MA(q) process are similarly defined. AR and MA terms are 

combined in ARMA (p, q) processes, AR MA(1,1) errors follow the process 

t tt 1 t 1          (5.5.12) 

Examining the residual autocorrelations from a preliminary OLS regression can 

suggest a reasonable from for the error-generating process. The lag-s residual 

autocorrelation is  

 

n

t t s

t s 1
s n

2

t

t 1

e e

e



 



 



      (5.5.13) 
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If the residuals were independently distributed, the standard error of each 
s would 

be approximately 1 n , a quantity that can be used as a rough guide to the 

statistical significance of the residual autocorrelations. A more accurate approach is 

to calculate the Durbin-Watson statistics,  

 

 
n

2

t t s

t s 1
s n

2

t

t 1

e e

D

e



 









      (5.5.14) 

Which have a known sampling distribution that depends upon the model matrix x. 

When the sample size is large,  s sD 2(1 )    and so Durbin-Watson statistics near 

2 are indicative of small residual autocorrelation, those below 2 of positive 

autocorrelation, and those above 2 of negative autocorrelation.  
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